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Abstract. In recent years the study of fitting orthogonal polynomials to

freeform surfaces has received much attention. In this report we will detail

how the Legendre and Chebyshev polynomials were derived and compare their
properties. In the pursuit for polynomials orthogonal over elliptical apertures,

we will show our attempted derivation.
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1. Introduction

Optics is the study of light. Scientists have historically used symmetrical sur-
faces to study light and its properties, but new research shows that manufacturing
optical components using asymmetrical surfaces — also called freeform surfaces —
is promising. By introducing a freeform surface in an optical system, designers can
balance the system’s optical aberrations. This field is called freeform optics.

However, precisely manufacturing freeform surfaces according to the specifica-
tions of clients is difficult with standard machines. Instead, optical designers in-
terpolate a point cloud of the desired freeform surface using polynomials, and this
mathematical description can then be interpreted by the special machine that man-
ufactures freeform surfaces.

To minimize the interpolation error, designers use orthogonal polynomials, a set
of polynomials such that any two unique polynomials in the set are orthogonal to
each other under some inner product. It is common to use Legendre or Chebyshev
polynomials for surfaces defined over rectangular apertures.
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More precisely, suppose for each point (x, y) on the Euclidean plane, we ap-
proximate f(x, y) using a weighted sum of the basis functions. The interpolating
polynomials are given to a state-of-the-art diamond turning tool that fabricates
freeform surfaces. However, the fabrication process introduces tiny ridges in the
surface, and certain kinds of these fabrication errors cause specific aberration pat-
terns. Understanding the mathematical properties of orthogonal polynomials is
therefore useful for finding relationships between fabrication error and measured
aberrations.

2. Orthogonal Polynomials

Consider a continuous function f(x) on the interval [a, b] and suppose we have
sample data (xi, f(xi))i with which to interpolate f . According to the Weierstrass
approximation theorem, f can be uniformly approximated as closely as desired by
a polynomial function. A natural idea is to use orthogonal polynomials since they
have nice properties for minimax interpolation. In this section, we will re-derive
and state the properties of Legendre and Chebyshev polynomials. In Section 4 we
will compare their rates of convergence and accuracies.

Let P(Rn) denote the polynomial space on Rn. Suppose we equip P(Rn) with
the inner product ⟨f, g⟩ defined by∫ b

a

f(x)g(x)ω(x) dx,

where ω is a non-negative weight function that assigns a certain importance to
each portion of the domain. Then the Gram-Schmidt process gives us a method to
generate an orthogonal basis for P(Rn).

Definition 2.1. An orthogonal polynomial is a sequence of polynomials Pn(x) of
degree n satisfying∫ b

a

Pn(x)Pm(x)ω(x) dx =

{
cn ̸= 0 if m = n

0 if m ̸= n

where cn is a scalar.

The weight function is often of the form ω(x) = (1−x)α(1+x)β . For α = β = 0,
the Gram-Schmidt process on the resulting inner product space generates Legendre
polynomials, and similarly for α = β = − 1

2 it generates Chebyshev polynomials.
Orthogonal polynomials satisfy the recurrence relation

(2.2) Pn+1(x) = (an(x) + bn)Pn(x) + cnPn−1(x),

where an(x), bn, and cn are real-valued functions.

2.1. Chebyshev Properties. We will now define some properties of Chebyshev
polynomials of the First Kind. Let Tn(x) denote the nth Chebyshev polynomial.

Definition 2.3. Chebyshev polynomials are orthogonal with respect to ω(x) =

(1− x2)−
1
2 over [−1, 1] and satisfy

∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

=


0 if n ̸= m

π if n = m = 0
π
2 if n = m ̸= 0.



ORTHOGONAL POLYNOMIALS 3

Definition 2.4. Tn(x) = cos(n cos−1(x)).

For each x ∈ [−1, 1], there exists an angle θ ∈ [0, π] such that x = cos θ.

Definition 2.5. Tn(x) = cos(nθ).

Theorem 2.6. Tn(x) is a polynomial of degree n.

Proof. We will first prove the following lemma about an expansion of cos(nθ).

Lemma 2.7.

cos(nθ) =

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
cosn−2k θ sin2k θ.

Proof. De Moivre’s formula states eiθ = cos θ + i sin θ, so taking both sides to the
power of n yields (eiθ)n = (cos θ + i sin θ)n. The binomial formula states

(2.8) (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk.

Letting x = cos θ and y = i sin θ in the binomial formula and using the identity
cosnθ + i sinnθ = (cos θ + i sin θ)n leads to the following two equations{

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n =
∑n
k=0

(
n
k

)
cosn−k θi sink θ

cos(nθ)− i sin(nθ) = (cos θ − i sin θ)n =
∑n
k=0(−1)k

(
n
k

)
cosn−k θi sink θ

whose sum is
2 cos(nθ) =[(

n

0

)
cosn θ(i sin θ)0 +

(
n

1

)
cosn−1 θ(i sin θ)1 +

(
n

2

)
cosn−2 θ(i sin θ)2 + · · ·

]
+[(

n

0

)
cosn θ(i sin θ)0 −

(
n

1

)
cosn−1 θ(i sin θ)1 +

(
n

2

)
cosn−2 θ(i sin θ)2 − · · ·

]
.

As shown above, corresponding terms in each summation have the same sign when
k is even, and otherwise they are opposite signs. Therefore,

2 cos(nθ) = 2

[(
n

0

)
cosn θ(i sin θ)0 +

(
n

2

)
cosn−2 θ(i sin θ)2 + · · ·

]
,

which implies

cos(nθ) =

(
n

0

)
cosn θ(i sin θ)0 +

(
n

2

)
cosn−2 θ(i sin θ)2 + · · · .

In other words,

cos(nθ) =

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
cosn−2k θ sin2k θ as needed.

□

It remains to show the nth Chebyshev polynomial has degree n. The identity
sin2 θ = 1 − cos2 θ implies sin2k θ = (sin2 θ)k = (1 − cos2 θ)k. By the binomial
theorem,

(1− cos2 θ)k =

{
1 + · · ·+ cos2k θ if k even

1 + · · · − cos2k θ if k odd.
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This means the degree of (1− cos2 θ)k is 2k. If k is even, Lemma 2.7 permits us to
write

cos(nθ) =

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
(cosn−2k θ(1 + · · ·+ cos2k θ)),

which after expanding leads to

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
(cosn−2k θ + · · ·+ (cosn−2k θ)(cos2k θ))

=

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
(cosn−2k θ + · · ·+ cosn θ).

Letting x = cos θ in the above equation yields

Tn(x) =

⌊n
2 ⌋∑

k=0

(−1)k
(
n

2k

)
(xn−2k + · · ·+ xn),

which is a polynomial of degree n. The same argument can be applied when k is
odd, since the sign of a term does not affect the power of the product between itself
and another term, completing the proof. □

Theorem 2.9. Chebyshev polynomials satisfy the recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

Proof. Recall the trigonometric identities cos(α+β) = cos(α) cos(β)−sin(α) sin(β)
and cos(α−β) = cos(α) cos(β)+sin(α) sin(β). We know cos(nθ) = cos(θ+θ(n−1)),
which is equivalent to cos θ cos θ(n− 1)− sin θ sin θ(n− 1) by the first identity with
α = θ and β = θ(n− 1). Therefore,

(2.10) cos(nθ) = cos θ cos θ(n− 1)− sin θ sin θ(n− 1).

In addition, cos(n−2)θ = cos(θ(n−1)−θ), which by the second identity is equivalent
to cos θ(n− 1) cos θ + sin θ(n− 1) sin θ. Rearranging yields

sin θ sin θ(n− 1) = cos(n− 2)θ − cos θ cos θ(n− 1),

which we can substitute into (2.10) and simplify to yield

cos(nθ) = 2 cos(n− 1)θ − cos(n− 2)θ.

Recurrence then follows from setting x = cos θ as needed. □

Theorem 2.9 allows us to the recursively generate the nth Chebyshev polynomial
starting T0 = 1 and T1 = x. The next several are

{T2, T3, T4, T5} = {2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1, 16x5 − 20x3 + 5x}.

Theorem 2.11. The leading coefficient of Tn is 2n−1 for n > 0.

Proof. We present a proof by induction starting with the base case n = 1, which
holds since T1 = x. Let the leading coefficient of Tn be 2n−1. Tn+1 = 2Tn−Tn−1 and
the inductive hypothesis implies the degree of Tn−1 is n−2, so the leading coefficient
of Tn−1 does not influence that of Tn, which is 2n−1. Hence 2 · 2n−1 = 21+(n−1) is
the leading coefficient of Tn+1. □
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Freeform surfaces are defined in three dimensions, which motivates a definition
for 2-D Chebyshev polynomials.

Definition 2.12. The jth 2-D Chebyshev polynomial Fj(x, y) is equivalent to
Tn(x)Tm(y), where j depends on n and m.

Definition 2.13. Fj(x, y) is a sequence of polynomials over [−1, 1] satisfying

∫ 1

−1

∫ 1

−1

Fj(x, y)Fj∗(x, y)
dx√
1− x2

dy√
1− y2

=


0 if j ̸= j∗

π2 if n = m = 0
π2

4 if n = m ̸= 0
π2

2 otherwise.

2-D Chebyshev polynomials are easily determined since they are the product of
the 1-D versions. For example {F0, F1, F2, F3, F4, F5, F6, F7}, which is determined
by {T0, T1, T2}, is

{1, x, y, 2x2 − 1, xy, 2y2 − 1, 4x3 − 3x, (2x2 − 1)y}.

2.2. Théorie des Mécanismes. Chebyshev polynomials were introduced in 1854
by Chebyshev in Théorie des mécanismes connus sous le nom de parallélogrammes.
My goals when writing an exposition of the original paper were to precisely inter-
pret the French language, remove redundancy wherever possible, clarify motives,
preserve order of ideas, and introduce new mathematics to corroborate the paper.
Hence I have neither taken credit for any original mathematics below nor have I
uncritically paraphrased Chebyshev.

Chebyshev used linkages to develop the theory of approximation of functions. A
mechanical linkage is a set of rigid bars connected to each other at their ends via
revolving hinges. For example, a human arm is a mechanical linkage.

Figure 1. Watt’s linkage.1

Linkages are useful because they produce certain kinds of motion. In Figure 1,
let the green line be the “middle bar” and the yellow lines the “rockers.” The points
marked x are fixed while the rest are not. In Figure 2, Watt’s linkage is defined by
the points ADMFG, where D and F are endpoints on the middle bar and M is an
arbitrary point on the middle bar. IfM is located exactly in the middle of D and F
and if the length of the rockers AD and FG, are the same, thenM moves along the
vertical dotted line in Figure 1. Otherwise, M follows a path called Watt’s curve.2

1See Wikipedia’s Watt’s linkage page for animation of Figure 1.
2See Wikipedia’s Watt’s curve page.
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Figure 2. Watt’s parallelogram in the steam engine.3

Chebyshev was interested in a specific mechanism called Watt’s parallelogram,
created by combining Watt’s linkage with a pantograph, which is a linkage of par-
allelograms that produce identical movements in various parts of the linkage.

The points O, A, and G in Figure 2 are fixed and the rest are variable. Assume
we are moving K in a circle about O. This circular motion rocks E and B in
such a way that M and C move rectilinearly, which causes the piston S to move
rectilinearly relative to a vertical line. Therefore, the steam machine is generally
good at converting circular motion into rectilinear motion.

However, Chebyshev found two problems with this machine. First, if ∥AD∥ ̸=
∥FG∥, then the optimal choice forM was unknown. Second, even ifM were located
optimally, the linear motion at S might not be sufficiently rectilinear. To solve
problems such as finding optimal proportions for Watt’s mechanism, Chebyshev
formulated the problem theoretically. More explicitly, Chebyshev explicitly wanted
to determine the changes to make to the approximation of f(x) in order to minimize
the maximum approximation error in [a− h, a+ h] for small h.

Suppose f(x) is a given function of degree n. Let U(x) with arbitrary coefficients
ζU be a polynomial of degree n which approximates f . Suppose f and U are defined
on [a− h, a+ h] for small positive h. We want to determine ζU using the minimax
criterion. Suppose the value of |f(x)− U(x)| is considered maximum at a− h and
a + h and we have chosen ζU such that the maximum of f − U is minimized in
(a−h, a+h). Then |f −U | reaches its maximum value δU at least n+2 times over
[a− h, a+ h], which implies |f − U | = δU at n+ 2 points. Therefore, the equation

(2.14) |f(x)− U(x)|2 − δ2 = 0

has n+ 2 roots in [a− h, a+ h] that also satisfy

(2.15) (x− a+ h)(x− a− h)
d

dx
(f(x)− U(x)) = 0.

Also let us simplify the Taylor series of f at a by letting kn = fn(a)
n! and hz = (x−a).

The Taylor series of f at a is therefore k0 + k1hz + h2h
2z2 + · · · where z ∈ [−1, 1].

Recall we want to determine ζU so that we minimize δU . Let the difference f − U

3From https://bhavana.org.in/math-and-motion-a-look-at-chebyshevs-works-on-linkages.
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be Y . We replace f with its Taylor series to yield

(2.16) k0 + k1hz + k2h
2z2 + · · · − U = Y.

Suppose our degree of precision in the Taylor series is n, meaning we delete terms
of order greater than n. Since U must have degree n, it is possible to reduce Y to
0 which implies

(2.17) U = k0 + k1hz + k2h
2z2 + · · ·+ knh

nzn

and

(2.18) kn+1 = kn+2 = · · · = kn+m = 0,

where we have introduced m to index the zero terms. We will introduce V , an
arbitrary polynomial of degree n, whose coefficients are finite when h = 0. Then

(2.19) U = U0 + V hn+m+1,

where U0 = k0 + k1hz+ k2h
2z2 + · · ·+ knh

nzn. Therefore, we can rewrite (2.16) as

k0 + k1hz + k2h
2z2 + · · · − (k0 + k1hz + k2h

2z2 + · · ·+ knh
nzn + V hn+m+1)

= (kn+m+1h
n+m+1zn+m+1 + kn+m+2h

n+m+2zn+m+2 + · · · − V hn+m+1)

= (kn+m+1z
n+m+1 + kn+m+2hz

n+m+2 + · · · − V )hn+m+1 = Y.

In the above expression, suppose we discard hn+m+1 and consider terms not con-
taining h, h2, h3, . . .. Then

Y = kn+m+1z
n+m+1 − V,

where V is determined to minimize kn+m+1z
n+m+1 − V for z ∈ [−1, 1] among all

other polynomials of the same degree. We wrote the equations (2.14) and (2.15) to
minimize δU . Similarly, V is of degree n, so there exist n+2 roots to the equations{

(kn+m+1z
n+m+1 − V )2 − δ2V = 0

(z2 − 1)) ddz (kn+m+1z
n+m+1 − V ) = 0.

Abbreviate the pair of equations above by letting L = δV and

(2.20) y = kn+m+1z
n+m+1 − V.

Hence the following equations share n+ 2 roots.

(2.21)

{
y2 − L2 = 0

(z2 − 1)dydz = 0.

Setting the two equations above equal to each other and rearranging implies

y2 − L2

(dydz )
2

=
P (z2 − 1)

Q2
.

Proof. Let {z1, z2, . . . , zn, zn+1, zn+2} be the roots of (2.21). Suppose zn+1 = −1
and zn+2 = 1 satisfy z2 − 1 = 0. Call these edge roots. The remaining roots

{z1, z2, . . . , zn} must satisfy dy
dz = 0 so let them be normal roots. If z is a normal

root, say z1, then we know that (z − z1) divides the first equation in (2.21) and dy
dz

so (z− z1)
2 divides (dydz )

2. Thus the product (z− z1)
2(z− z2)

2 · · · (z− zn)
2 divides

the first equation and (dydz )
2. Otherwise, z is an edge root so (z + 1)(z − 1) divides

the second equation.
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Therefore the degree of the first equation in (2.21) is 2(m+n+1)−2n = 2m+2

and the degree of dydz is (m+n+1−1)−n = m. These degrees imply the degrees of
P and Q are 2m and m as needed. According to [[1], p. 9], the differential equation

holds even if one or both edge roots satisfy dy
dz = 0. □

We rearrange the differential equation to find

dy√
y2 − L2

=
Qdz√

P (z2 − 1)
.

The integral of the left side is

1

2
log

y +
√
y2 − L2

y −
√
y2 − L2

,

so the integral of the right side must be of the form

1

2
log

p+ q
√
R

p− p
√
R
,

where p must also have degree n+m+1. Since V is of degree n, we know y and p
cannot have terms containing zn+1, . . . , zn+m−1, zn+m.

We now solve for y based on the value of m. If m = 0, then Q and P become
constants in the integral so

dy√
y2 − L2

= λ
dz√

(z2 − 1)
.

The above equation implies

y = ±L
2

[(
z +

√
z2 − 1

)λ
+
(
z −

√
z2 − 1

)λ]
.

To determine the values of L and λ, notice that y has degree n + 1. According to

(2.20), y = kn+1z
n+1 − V so λ = n + 1. Moreover, we know ±L

2 = ±kn+1

2n+1 implies

L = ±kn+1

2n , so L = ±kn+1

2λ−1 . Altogether,

(2.22) λ = n+ 1, L = ±kn+1

2λ−1
= ±kn+1

2n
.

These values of λ and L imply

(2.23) y =
kn+1

2n+1

[(
z +

√
z2 − 1

)n+1

+
(
z −

√
z2 − 1

)n+1
]

and according to (2.20),

V = kn+1z
n+1 − kn+1

2n+1

[(
z +

√
z2 − 1

)n+1

+
(
z −

√
z2 − 1

)n+1
]

which can be simplified to

(2.24) V = kn+1

zn+1 −

(
z +

√
z2 − 1

2

)n+1

−

(
z −

√
z2 − 1

2

)n+1
 .

If m = 1, then (2.20) implies y = kn+2z
n+2 − V . However, V is of degree n so

y cannot contain powers of z greater than n + 1 besides kn+2z
n+2. According to
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(2.23), y = kn+2z
n+2 − V is the polynomial that deviates least from 0 among all

polynomials of degree n for z ∈ [−1, 1] and V is

V = kn+2

zn+2 −

(
z +

√
z2 − 1

2

)n+2

−

(
z −

√
z2 − 1

2

)n+2
 .

Finally, if m > 1, then we can find V with 2m equations according to (2.20) and
explained on [[1], p. 13]. Therefore, for any m, we can find V .

We learned the polynomial g of degree n that minimizes max |f(x) − g(x)| for
|x| ≤ a + h with f (n+1) nonzero takes the form g = U + V hn+1, where U =
k0 + · · · + knh

nzn and V is the polynomial of degree n that deviates least from
kn+1z

n+1 + kn+2hz
n+2 + · · · compared to all other polynomials of degree n for

|z| ≤ 1. We also learned

V = kn+1

zn+1 −

(
z +

√
z2 − 1

2

)n+1

−

(
z −

√
z2 − 1

2

)n+1
 .

Thus (2.20) implies
y = kn+1z

n+1 − V

= kn+1z
n+1 −

kn+1

zn+1 −

(
z +

√
z2 − 1

2

)n+1

−

(
z −

√
z2 − 1

2

)n+1


= kn+1

(z +√
z2 − 1

2

)n+1

+

(
z −

√
z2 − 1

2

)n+1
 .

We will now show that V can be found for any desired accuracy.

Remark 2.25. For an immediate derivation of Chebyshev nodes and polynomials,
see Derivation 2.3.

If V0 is a polynomial with finite coefficients when h = 0, then

(2.26) V = kn+1z
n+1 − y + V0h.

The maximum approximation error that the coefficients ζV minimize is

kn+1z
n+1 + kn+2hz

n+2 + · · · − V

= kn+2hz
n+2 + · · ·+ y − V0h,

where |z| ≤ 1. Hence

(2.27)
[
kn+2hz

n+2 + y − V0h
]2 − L2 = 0

and

(2.28) (z2 − 1)
d

dz

(
kn+2hz

n+2 + y − V0h
)
= 0

have n+ 2 common roots. We can rewrite (2.28) as

(z2 − 1)
dy

dz
+ (z2 − 1)

d

dz
(kn+2hz

n+2 − V0)h = 0

implying that for sufficiently small h, all its roots living in [−1, 1] must satisfy

(z2 − 1)dydz . Also, (2.27) can be written as

(y2 − L2
1)y + 2y2(kn+2z

n+2 − V0)h = 0.
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However, we showed that

y = kn+1

(z +√
z2 − 1

2

)n+1

+

(
z −

√
z2 − 1

2

)n+1


must satisfy y2 − L2 = 0, so (2.27) is equivalent to

(L2 − L2
1)y + 2L2(kn+2z

n+2 − V0)h = 0.

This equation has degree n + 2 because the degrees of y and V0 are n + 1 and
n respectively, which are both less than n+ 2. The new expressions for (2.27) and
(2.28) both have degree n+ 2 so they are multiples of each other. Hence,

(L2 − L2
1)y + 2L2(kn+2z

n+2 − V0)h− C((z2 − 1)
dy

dz
) = 0

for some constant C. Since y does not contain a term containing zn and the degree
of V0 is at most n, the coefficient of zn+1 in the first term cannot equal 0 unless
L2 − L2

1 = 0. Under this assumption, (2.22) implies

(2.29) L1 = ±kn+1

zn
,

which implies

V0 = kn+2z
n+2 − C

2hL2
(z2 − 1)

dy

dz
= 0.

Since the degree of dy
dz must be (n + 1) − 1 = n, there exists a term of the form

(n+ 1)kn+1z
n+2 in the expansion of (z2 − 1)dydz . Factoring out zn+2 yields

V0 = zn+2

(
kn+2 −

(n+ 1)Ckn+1

2hL2

)
= 0.

However zn+2 ̸= 0 over our entire domain, so

kn+2 −
(n+ 1)Ckn+1

2hL2
= 0 =⇒ C

2hL2
=

kn+2

(n+ 1)kn+1
.

Substituting this into the expression for V0 implies

V0 = kn+2z
n+2 − kn+2

(n+ 1)kn+1
(z2 − 1)

dy

dz
= kn+2

(
zn+2 − (z2 − 1)

(n+ 1)kn+1

dy

dz

)
= 0.

We can finally write according to (2.26) an expression for V , which is

(2.30) V = kn+1z
n+1 − y + kn+2

(
zn+2 − z2 − 1

(n+ 1)kn+1

dy

dz

)
h.

Theorem 2.31. Assume V is given up to (but not including) terms of order l.
Then, V can be found up to (but not including) terms of order 2l.

Proof. Let V1 denote the given V , which is of the form (2.30). Then,

V = V1 + V2h
l,

is an equation for finding the new value of V , where V2 is of degree n. Finding V2
is straightforward because we know it satisfies the condition that the equations

[kn+1z
n+1 + kn+2hz

n+2 + · · · − V1 − V2h
l]− L2

2 = 0

(z2 − 1)
d

dz
(kn+1z

n+1 + kn+2hz
n+2 + · · · − V1 − V2h

l) = 0
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share n+2 roots in [−1, 1]. Since V only requires precision up to terms of order 2l,
we remove terms containing h2l, h2l+1, h2l+2,+ · · · to find the system of equations

(2.32)

{
[y1 + Shl − V2h

l]2 − L2
2 = 0 (2.33A)

(z2 − 1) ddz (y1 + Shl − V2h
l) = 0 (2.33B),

where

(2.33)

{
y1 = kn+1z

n+1 + kn+2hz
n+2 + · · ·+ kn+lh

l−1zn+1 − V1

S = kn+l+1z
n+l+1 + kn+l+2hz

n+l+2 + · · ·+ kn+2lh
l−1zn+2l,

which can be reduced to{
y1 =

(∑n+l
p=n+1 kph

p−n−1zp
)
− V1

S =
∑n+2l
p=n+l+1 kph

p−n−l−1zp.

Since y1 should satisfy {
y21 − L2

1 = 0

(z2 − 1)dy1dz = 0,

we know

(2.34) L2 = L1 + λhl.

Also, y1 must satisfy (z2 − 1)dy1dz = 0 in order to satisfy (2.32B) which allows us

to replace (2.32B) with the prerequisite. For simplicity, also replace dy1
dz with some

function W of degree n that contains the same roots as dy1
dz the interval [−1, 1].

Altogether we now have an equivalent form for (2.32B), which is

(z2 − 1)W = 0.

The above equation has degree n+2 and shares all of its roots with z2 − 1dy1dz = 0,

so (z2 − 1)W = 0 satisfies {
y21 − L2

1 = 0

(2.32A).

Substituting (2.34) into (2.32A) implies

[y1 + Shl − V2h
l]2 − L2

2

= [y1 + (S − V2)h
l]2 − (L1 + λhl)2

= y21 + 2y1(S − V2)h
l + (S − V2)

2h2l − (L2
1 + 2L1λh

l − λ2h2l)

= y21 + 2y1(S − V2)h
l + (S − V2)

2h2l − L2
1 − 2L1λh

l + λ2h2l = 0.

Removing terms containing h2l leaves us with

y21 + 2y1(S − V2)h
l − L2

1 − 2L1λh
l = 0,

multiplying by y1 and substituting for L1 yields

(y21 − L2
1)y1 + 2L2

1(S − V2)h
l − 2λL1h

ly1 = 0,

and rearranging gives

V2h
l +

λhl

L1
y1 − Shl − (y21 − L2

1)

2L2
1

y1 = 0.
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We are sure that this equation and (z2 − 1)W = 0 share n + 2 roots, so V2h
l is

divisible by (z2 − 1)W . Thus,

V2h
l + λhl

L1
y1 − Shl − (y21−L

2
1)y1

2L2
1

= 0

(z2 − 1)W
= V2h

l +
λ

L1
R0 −R1 = 0,

where

R0 =
y1h

l

(z2 − 1)W
and R1 =

Shl +
(y21−L

2
1)y1

2L2
1

(z2 − 1)W
.

This implies V2h
l = R1 − λ

L1
R0. Dividing R1 by R0 yields R1 = r + qR0 where r

is the remainder and q the quotient, so

V2h
l = (r + qR0)−

λ

L1
R0 = r + (q − λ

L1
)R0.

Letting q = λ
L1

implies V2h
l = r, which is the condition under which we can

determine V2h
l and V . λ = L1q so the value of L2 according to (2.34) is

L2 = L1 + λhl = L1 + (L1q)h
l = L1(1 + qhl).

We now know in (2.32A) the value of L2, which is

max |kn+1z
n+1 + kn+2hz

n+2 + kn+3h
2zn+3 + · · · − V |

for z ∈ [−1, 1]. Ultimately, the equation V = V1 + V2h
l implies that given some

approximation of V , we can always find a more precise approximation of V . □

We will now solve the initial parallelogram problem. The goal of the problem
is to determine the coefficients of the degree 4 Taylor series approximation of f(x)
at x = a that minimize the difference between the approximation and f(x) in the
interval [a − h, a + h]. Assuming h is small enough and f5(a) ̸= 0, the desired
coefficients are given by V hn+1 = V h5, where V is a function of z = x−a

h and is
chosen to minimize

max |kn+1z
n+1 + kn+2hz

n+2 + kn+3h
2zn+3 + · · · − V |.

According to (2.30),

V = kn+1z
n+1 − y + kn+2

(
zn+2 − z2 − 1

(n+ 1)kn+1

dy

dz

)
h,

where

y = kn+1

(z +√
z2 − 1

2

)n+1

−

(
z −

√
z2 − 1

2

)n+1
 .

For n = 4,

V = k5z
5 − y + k6

(
z6 − z2 − 1

5k5

dy

dz

)
h

and

y = k5

(z +√
z2 − 1

2

)5

−

(
z −

√
z2 − 1

2

)5
 = k5

(
z5 − 5

4
z3 +

5

16
z

)
.

Thus,

V = k5z
5 −

[
k5

(
z5 − 5

4
z3 +

5

16
z

)]
+ k6

(
z6 − z2 − 1

5k5

dy

dz

)
h
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= k5

(
5

4
z3 − 5

16
z

)
+ k6

(
7

4
z4 − 13

16
z2 +

1

16

)
h.

Finally, (2.29) implies

|L1| =
∣∣∣∣kn+1

2n

∣∣∣∣ = ∣∣∣∣k516
∣∣∣∣ .

With this information, we can find the exact value of V up to h4 according to
Theorem 2.31 since we know V up to h2. Thus l = 2 so V = V1 + V2h

2. Assigning
to V1 the value of V implies

y1 = k5z
5 + k6hz

6 − V1

= k5z
5 + k6hz

6 −
[
k5

(
5

4
z3 − 5

16
z

)
+ k6

(
7

4
z4 − 13

16
z2 +

1

16

)
h

]
= k5

(
z5 − 5

4
z3 +

5

16
z

)
+ k6

(
z6 − 7

4
z4 +

13

16
z2 − 1

16

)
h

= y + k6

(
z6 − 7

4
z4 +

13

16
z2 − 1

16

)
h,

and S = k7z
7 + k8hz

8. We now determine V2. The degree 4 equation W that
contains the roots of

dy1
dz

= k5

(
5z4 − 15

4
z2 +

5

16

)
+ k6

(
6z5 − 7z3 +

13

8
z

)
h = 0

is determined by V2h
l = r, which is the remainder of the division

k6
(
6z5 − 7z3 + 13

8 z
)

k5
(
5z4 − 15

4 z
2 + 5

16

) .
The remainder is r = k6

(
− 5

2z
3 + 5

4z
)
h, so

W = k5

(
5z4 − 15

4
z2 +

5

16

)
+ k6

(
−5

2
z3 +

5

4
z

)
h = 0.

Next, R0 is the remainder of the division

y1h
2

(z2 − 1)W
=

[
k5
(
z5 − 5

4z
3 + 5

16z
)
+ k6

(
z6 − 7

4z
4 + 13

16z
2 − 1

16

)
h
]
h2

(z2 − 1)
[
k5
(
5z4 − 15

4 z
2 + 5

16

)
+ k6

(
− 5

2z
3 + 5

4z
)
h
] ,

so R0 = k5
(
z5 − 5

4z
3 + 5

16z
)
h2 = yh2. Similarly, R1 is the remainder of

Shl +
(y21−L

2
1)y1

2L2
1

(z2 − 1)W
=

Sh2 +
(y21−L

2
1)y1

2L2
1

(z2 − 1)
[
k5
(
5z4 − 15

4 z
2 + 5

16

)
+ k6

(
− 5

2z
3 + 5

4z
)
h
] .

Hence R1 = [a1z
5 − a2z

3 + a3z]h
2 + [a4z

4 − a5z
2 + a6]h

3, where

{a1, a2, a3, a4, a5, a6} = {7k5k7 + k26
4k5

,
13k5k7 + 6k26

16k5
,
k5k7 + 2k26

16k5

36k25k8 + 2k5k6k7 − k36
16k25

,
87k25k8 + 10k5k6k7 − 5k36

64k25
,
7k25k8 + 2k5k6k7 − k36

64k25
}.

Notice
R1

R0
=

[a1z
5 − a2z

3 + a3z]h
2 + [a4z

4 − a5z
2 + a6]h

3

yh2
= q + r.
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Hence, r = b1h
3z4 + b2h

2z3 − b3h
3z2 − b4h

2z + b5h
3, where

{b1, b2, b3, b4, b5} = {36k
2
5k8 + 2k5k6k7 − k36

16k25
,
22k5k7 − k26

16k5

87k25k8 + 10k5k6k7 − 5k36
64k25

,
31k5k7 − 3k26

64k5
,
7k25k8 + 2k5k6k7 − k36

64k25
}.

Since V2h
2 = r up to h4, we can now determine V .

V = V1 + V2h
2 =[

k5

(
5

4
z3 − 5

16
z

)
+ k6

(
7

4
z4 − 13

16
z2 +

1

16

)
h

]
+
[
b1h

3z4 + b2h
2z3 − b3h

3z2 − b4h
2z + b5h

3
]

= c1z
4 + c2z

3 − c3z
2 − c4z + c5h+ c6h

3,

where

{c1, c2, c3, c4, c5, c6} = {7
4
k6h+ b1,

5

4
k5 + b2,

13

16
k6h+ b3,

5

16
k5 + b4,

1

16
k6, b5}.

The division R1

R0
also yields q =

7k5k7+k
2
6

4k25
. Hence, the value of L2 must be

L2 = L1(1 + qhl) =

∣∣∣∣k516
∣∣∣∣ (1 + 7k5k7 + k26

4k25
h2
)
.

Finally, the substitution x− a = hz implies

V h5 =
[
c1z

4 + c2z
3 − c3z

2 − c4z + c5h+ c6h
3
]
h5

= (c1 + · · · )
(
x− a

h

)4

+ (c2 + · · · )
(
x− a

h

)3

− (c3 + · · · )
(
x− a

h

)2

−(c4 + · · · )
(
x− a

h

)
+ (c5 + · · · )h6 + (c6 + · · · )h8,

which are the coefficients of the degree four Taylor series that minimize the maxi-
mum deviation from f(x) when x ∈ [a− h, a+ h]. The maximum error is

|L2h
5| =

∣∣∣∣k516
∣∣∣∣ (1 + 7k5k7 + k26

4k25
h2
)
h5.

2.3. Chebyshev Derivation. Suppose f(x) = kn+1x
n+1. Let γ and α satisfy

[α − γ, α + γ] ⊂ [a − h, a + h]. Suppose we are looking for a polynomial u of
degree n that equals f when |x| = a+ γ and deviates least from f among all other
polynomials of the same degree when |x| < a + γ. If l = max(f(x) − u(x)) for
|x| < a+ γ, then the equations

(f(x)− u(x))2 − l2 = 0,
d(f(x)− u(x))

dx
= 0

share n roots that are located in the interval [a−γ, a+γ]. Moreover, the equations

(2.35) (f(x)− u(x))2 − l2 = 0, (x− a+ h)(x− a− h)
d(f(x)− u(x))

dx
= 0

share n+ 2 roots that are located in the interval [a− h, a+ h]. Suppose

y =
kn+1x

n+1 − u

hn+1
, x = a+ hz, L =

l

hn+1
.
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Then, (2.35) is equivalent to the equations

y2 − L2 = 0, (z2 − 1)
dy

dz
= 0,

which share n+ 2 roots for |z| ≤ 1. Recall

y = kn+1

(z +√
z2 − 1

2

)n+1

+

(
z −

√
z2 − 1

2

)n+1
 .

Substituting our supposed values for y, x, and L into the above equation implies
kn+1x

n+1 − u equals

kn+1

(x− a+
√
(x− a)2 − h2

2

)n+1

+

(
x− a−

√
(x− a)2 − h2

2

)n+1
 .

Suppose |x| = a+γ. Then, the above equation must be equal to zero. Substituting
x− a = h cos θ implies(

h cos θ +
√

(h cos θ)2 − h2

2

)n+1

+

(
h cos θ −

√
(h cos θ)2 − h2

2

)n+1

=

(
h cos θ + hi sin θ

2

)n+1

+

(
h cos θ − hi sin θ

2

)n+1

=

(
h

2

)n+1 (
(cos θ + i sin θ)

n+1
+ (cos θ − i sin θ)

n+1
)
= 0.

Dividing both sides by
(
h
2

)n+1
and using Euler’s formula twice implies(

eiθ
)n+1

+
(
e−iθ

)n+1
=
(
ei(n+1)θ

)
+
(
e−i(n+1)θ

)
= 2 cos(n+ 1)θ = 0.

Finally, dividing by 2 yields cos(n+ 1)θ = 0. To find the values of x for which the
above equation is true, we should find all θ for which

(n+ 1)θ =
π

2
+ πn.

Hence

θ =
2πn+ π

2n+ 2
,

so

x = h cos

(
2πm+ π

2n+ 2

)
+ a

where m is an integer. This formula gives the abscissa for which the interpolation
error is zero for given values of h, a, and n. Recall that

d(kn+1x
n+1 − u)

dx
= 0

which reduces to
sin(n+ 1)θ

sin θ
= 0

has n roots for x− a = h cos θ. The roots to the above equation are understood for
only two values which are

a− h cos
π

2n+ 2
, a+ h cos

π

2n+ 2
.



16 FRANCIS BAHK

Hence, the assumed the value of x implies

a = α, h =
γ

cos π
2n+2

.

We will now derive the Chebyshev polynomials. Let a function y = f(x) be
given. We need to choose the n parameters of our interpolant Y = F (x, h) in such
a way that y and Y intersect at n intersection points lying in [a − h, a + h] which
minimize the maximum interpolation error in this interval. In other words, we need
to find the optimal points of intersection between y and Y . F has n parameters,
so F should have degree n− 1. When h = 0, F should satisfy

F (a, 0) = f(a),
d

dx
F (a, 0) =

d

dx
f(a), . . . ,

dn−1

dxn−1
F (a, 0) =

dn−1

dxn−1
f(a),

with the nth derivative of F being 0. Therefore,

(2.36)
dn

dxn
F (x, h) =

dn

dxn
f(x) + k

for some constant k. Suppose the above derivatives remain continuous for h small
but nonzero. Then the Taylor series T of Y − y at a is of the form

c0 + c1(x− a) + c2(x− a)2 + . . .+ cn−1(x− a)n−1 + cn(x− a)n.

Notice
dn

dxn
Y − y =

dn

dxn
F (x, h)− dn

dxn
f(x)

=
dn

dan
F (a, 0)− dn

dan
f(a)︸ ︷︷ ︸

N

+
dn

dxn
F (x, h)− dn

dxn
f(x)− dn

dan
F (a, 0)− dn

dan
f(a)︸ ︷︷ ︸

ψ(x)

which implies

cn =
N + ψ(a+ h)

n!
=
N

n!
.

The existence of u now depends on whether T reduces to

cn

[(
x− a+

√
(x− a)2 − h2

2

)n
+

(
x− a−

√
(x− a)2 − h2

2

)n]
.

According to our previous work, the above expression for T reduces to cosnθ, whose
roots are

θ = π

(
2m+ 1

2n

)
for any integer m. Since the domain is [−1, 1], h and a are 1 and 0 respectively, so

x = cos

(
π
2m+ 1

2n

)
are the abscissa of the optimal interpolation nodes, which are the Chebyshev nodes
and Tn(cos θ) = cosnθ then follows from Definition 2.9.
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2.4. Legendre Properties. This section is about Legendre polynomials of the
First Kind.

Definition 2.37. Legendre polynomials are a sequence of polynomials Pn(x) or-
thogonal over [−1, 1] with respect to the weight function ω(x) = 1. Legendre
polynomials satisfy ∫ 1

−1

Pn(x)Pm(x) dx =

{
0 if n ̸= m

1 if n = m.

Legendre polynomials are an orthonormal basis for any real polynomial space.
The first few Legendre polynomials are

{P0, P1, P2, P3} = {1, x, 3
2
x2 − 1

2
,
5

2
x3 − 3

2
x}.

2.5. Legendre Derivation. We will explain three important preliminaries before
deriving Legendre polynomials.

Definition 2.38. A generating function G defined as G(an;x) =
∑∞
n=0 anx

n en-
codes a sequence of numbers (an) as the coefficients of a power series.

Remark 2.39. In R3, a multipole expansion is a power series whose first few terms
provide a good approximation of a function that depends on angles.

Remark 2.40. The Newtonian potential function ϕ gives the gravitational poten-
tial at some point p in a Euclidean space due to a fixed point mass a.

According to [[5] p. 528], mathematicians Euler and Lagrange were the first
to derive ϕ in the rectangular coordinate system, but in 1782 French polymath
Pierre-Simon Laplace independently derived ϕ in both the rectangular and polar
systems. At around the same time, Laplace’s compatriot Adrien-Marie Legendre
showed in his memoir ”Sur l’attraction des sphéröıdes homogènes” published in
Mémoires de Mathématiques et de Physique that the Newtonian potential given
by Laplace is the generating function for the Legendre polynomials. Hence, many
mathematicians — including Jacobi, Dirichlet, and Heine — agreed to attach the
polynomials to Legendre since he developed the multipole expansion that led to
them. The following derivation uses the method of [2] and shows the Legendre
polynomials are the coefficients in the expansion of ϕ.

The gravitational potential at some point p in a Euclidean space due to a fixed
point mass a is described by the Newtonian potential function ϕp(D) = −GMa

D .
Here, G is the gravitational constant, Ma is the mass of a, and D is the distance
between a and p. Since −GMa is constant, let us call it Ca. Thus, ϕp(D) = Ca

D .
Let the coordinates of a be (xa, ya, za) and p be (x, y, z). Then, the distance from
a to p is given by √

(x− xa)2 + (y − ya)2 + (z − za)2.

Also, let O⃗a and O⃗p be vectors from the origin to a and to p. The length of O⃗a

is da =
√
(xa)2 + (ya)2 + (za)2 and the length of O⃗p is dp =

√
x2 + y2 + z2. Let θ

be the angle between O⃗a and O⃗p. Using the Law of Cosines,

D =
√
(dp)2 + (da)2 − 2dpda cos θ.
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Let t = da
dp
. Substitute da = tdp and x = cos θ into the above equation to find

D =
√

(dp)2 + (tdp)2 − 2dp(tdp)(x) = (dp)
√

1 + t2 − 2tx.

Therefore,

ϕp(D) =
C

D
=

C

(dp)
√
1 + t2 − 2tx

=
C

(dp)g(x, t)

where g(x, t) =
√
1 + t2 − 2tx. To express g(x, t) as a Maclaurin series, which is

a Taylor series expansion of a function at x = 0, we first calculate the successive
derivatives of g. For simplification, let α = 2tx− t2. Then,

g(α) =
1√

1− α
= (1− α)−

1
2 .

The next few successive derivatives of g are

g′ =
1

2
(1− α)−

3
2 , g′′ =

3

4
(1− α)−

5
2 , g′′′ =

15

6
(1− α)−

7
2 .

The pattern implies the nth derivative of g is

(1− α)−
2n+1

2 (2n− 1)!!

2n

for non-negative n and α = 0. Therefore,

g(α) =

∞∑
n=0

(2n− 1)!!αn

2nn!
.

Proposition 2.41. The double factorial (2k − 1)!! is equivalent to (2k)!
2kk!

for any
positive integer k.

Proof. First we prove two lemmas regarding double factorials.

Lemma 2.42. (2k)!! = 2kk!.

Proof.

(2k)!! = (2k)(2k − 2)(2k − 4) · · · 4 · 2 = 2(k)2(k − 1)2(k − 2) · · · 2(2) · 2(1),

which is equivalent to

= 2k((k)(k − 1)(k − 2) · · · 2 · 1) = 2kk!.

□

Lemma 2.43. n! = n!!(n− 1)!! for any non-negative integer n.

Proof. If n is odd, then

n!! = n(n− 2)(n− 4) · · · 3 · 1 and (n− 1)!! = (n− 1)(n− 3)(n− 5) · · · 4 · 2.

Therefore,

n!!(n− 1)!! = (n · · · · 5 · 3 · 1)((n− 1) · · · 6 · 4 · 2) = n(n− 1) · · · 3 · 2 · 1 = n!.

Otherwise n must be even, so the factors of n!! and (n− 1)!! are the even numbers
up to n and the odd numbers up to n − 1, respectively. Altogether, the factors of
n!!(n− 1)!! must be all the numbers up to n, which is n!. □
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Lemma 2.43 implies

n!! =
n!

(n− 1)!!
=
n(n− 1)(n− 2) · · ·
(n− 1)(n− 3) · · ·

=
(n+ 1)

(n+ 1)

n(n− 1)(n− 2) · · ·
(n− 1)(n− 3) · · ·

=
(n+ 1)!

(n+ 1)!!
.

Now, let n = 2k − 1. Then,

(2k − 1)!! =
((2k − 1) + 1)!

((2k − 1) + 1)!!
=

(2k)!

(2k)!!
=

(2k)!

2kk!

using Lemma 2.42 in the denominator. □

Expanding the series explicitly for the first few terms yields

(−1)!!α0

200!
+

(1)!!α1

211!
+

(3)!!α2

222!
+

(5)!!α3

233!
+ · · · = 1 +

1

2
α+

3

8
α2 +

5

16
α3 + · · ·

using Proposition 2.41. We can then substitute 2xt− t2 for α and rearrange terms
to find the Legendre polynomials.

g = 1 +
1

2
(2xt− t2) +

3

8
(2xt− t2)2 +

5

16
(2xt− t2)3 + · · ·

= 1 + xt− 1

2
t2 +

3

8
((2xt)2 − 4xt3 + t4) +

5

16
((2xt)3 + 12xt4 + 6xt5 + t6) + · · ·

= (1) + (x)t+ (
3

2
x2 − 1

2
)t2 + (

5

2
x3 − 3

2
x)t3 + (. . .)t4 + (. . .)t5 + · · · .

The expansion of g reveals that the nth Legendre polynomial Pn is the coefficient
of tn, as needed.

3. Interpolation Error

The Runge Phenomenon occurs when uniform spacing between interpolation
nodes causes the interpolating polynomial to experience severe oscillation along
the edges of the interval of approximation. For example, consider (1 + 25x2)−1 on
[−1, 1]. The Chebyshev nodes reduce the Runge phenomenon.

Definition 3.1. The Chebyshev nodes xk defined by

xk = cos

(
(2k − 1)π

2n

)
are the roots of Tn(x) on [−1, 1].

Suppose f ∈ Cn+1[−1, 1] and p are polynomials of degree n and p interpolates
f at n nodes {x1, x2, ..., xn}.

Theorem 3.2. ∥f − p∥∞ is bounded by

∥f (n+1)∥∞
(n+ 1)!

∥w∥∞

where w(x) = (x− x1)(x− x2) · · · (x− xn).

Since f and n are given, the minimum ∥f − p∥∞ corresponds to the set of

interpolation nodes that minimize ∥w∥∞. Let P̃ be the monic polynomials of degree

n defined over [−1, 1]. Hence w ∈ P̃ . Theorem 2.11 implies that dividing the
nth Chebyshev polynomial by its leading coefficient which is 2n−1 yields a monic
polynomial of degree n whose roots are exactly the Chebyshev nodes.
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Theorem 3.3. ∥f − p∥∞ is bounded by

(3.4)
1

2(n−1)(n+ 1)!
∥f (n+1)∥∞.

Proof. Suppose g(x) ∈ P̃ and h(x) = 1
2n−1Tn(x).

Lemma 3.5. h ∈ P̃ satisfies ∥h∥∞ ≤ ∥p∥∞ for all p ∈ P̃ over [−1, 1]. Also, ∥h∥∞
= 1

2n−1 and |h| = ∥h∥∞ at n+ 1 points {x0, x1, ..., xn} such that xk = cos kπn for k
between 0 and n, inclusive.

Proof. For a contradiction, suppose ∥g∥∞ < 1
2n−1 . Let f(x) = 1

2n−1Tn(x) − g(x).

The leading coefficient of Tn(x) is 2
n−1, which implies f(x) must have degree less

than n since the terms with the highest order in g(x) and Tn(x) disappear. Since
|Tn(x)| = 1 at its extreme points, ∥g∥∞ < 1

2n−1 ≤ 1
2n−1 |Tn(x)|. This implies

|g(x)| < | 1
2n−1Tn(x)| because n is positive. Altogether, letting x = cos( 2kπn ) in

Definition 2.4 implies

Tn(x) = cos

(
n cos−1(cos

2kπ

n
)

)
= cos(2kπ) = 1 for 0 ≤ 2k ≤ n.

By assumption, ∥g∥∞ < 1
2n−1 ≤ 1, so ∥g∥∞ < 1. Since Tn(x) = 1 > |g(x)| and k

is an integer, we know f(x) must be positive at ⌊n2 ⌋+ 1 distinct points. Similarly,

whenever x = cos( (2k+1)π
n ), we find

Tn(x) = cos

(
n cos−1

(
cos

(2k + 1)π

n

))
= cos(2kπ+π) = −1 for 0 ≤ 2k + 1 ≤ n.

We know Tn(x) = −1 < |g(x)| so there are ⌊n2 ⌋ + 1 unique points at which f(x)
must be negative. To be clear, |f(x)| = ∥f∥∞ at a total of 2⌊n2 ⌋+2 extrema which

can be described by the set E = {x0, x1, ..., xn} = {cos 0π
n , cos

1π
n , ..., cos

nπ
n }. The

method of construction of the set E implies f(x) is positive at xk when k is odd and
negative when k is even. The Intermediate Value Theorem asserts that whenever
f(a) < L < f(b), there exists a point c in (a, b) satisfying f(c) = L. Adjacent
elements of the set f(E) = {f(x0), f(x1), ..., f(xn)} differ in sign and polynomials
are continuous. Without loss of generality, let f(xi) < f(xj) for any xi adjacent to
xj . Then, the Intermediate Value Theorem implies there is some point c in between
xi and xj such that f(xi) < f(c) = 0 < f(xj). Because f is positive ⌊n2 ⌋+1 unique
times and negative ⌊n2 ⌋+1 times, in total f must cross the x-axis n times. In other
words, f has n roots, which is impossible because our assumption showed f must
have degree less than n. Therefore, it must be true that ∥g∥∞ ≥ 1

2n−1 . □

Thus the maximum of any monic polynomial g of degree n over [−1, 1] can be
made as small as 1

2n−1 , so Theorem 3.2 implies ∥f − p∥∞ can be reduced to

∥f (n+1)∥∞
2(n−1)(n+ 1)!

,

completing the proof. □
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4. Comparison of Chebyshev and Legendre Expansions

Suppose f, p∗ ∈ C[−1, 1] are of degree n. Then the minimax interpolating poly-
nomial p∗ exists and is unique. The Legendre expansion Pn(f) of degree n is defined
as

Pn(f) = a1P1(x) + a2P2(x) + · · ·+ anPn(x)

and the Chebyshev expansion Tn(f) of degree n is defined as

Tn(f) = a1T1(x) + a2T2(x) + · · ·+ anTn(x),

where the coefficients (an) for each expansion can be determined using the applica-
tion of an inner product. It is well known that in the Euclidean norm, p∗ = Pn(f)

with respect to ω(x) = 1 and p∗ = Tn(f) with respect to ω(x) = (1 − x2)−
1
2 .

The rate at which these series converge to f is called the rate of convergence. A
larger rate of convergence implies quicker convergence on an approximation that is
arbitrarily precise.

Definition 4.1. f is real analytic on (a, b) if it is infinitely differentiable and the
Taylor series at x0 ∈ (a, b) converges pointwise to f(x) for all x ∈ Vϵ(x0).

According to [[4], p. 5], the optimal rate of convergence of p∗ is better by a
constant factor than that of Tn(f) and by a factor of

√
n than that of Pn(f) for

analytic functions. This means the optimal rate of Tn(f) is a factor
√
n greater

than that of Pn(f). For non-analytic smooth functions, the rate of convergence of
p∗ is better by a constant factor than that of both Tn(f) and Pn(f).

Chebyshev expansions are also better minimax candidates than Legendre expan-
sions of the same degree. According to [[4], p. 3],

(4.2) ∥f − Tn(f)∥∞ ≤
(

4

π2
log n+ 4

)
∥f − p∗∥∞

and

(4.3) ∥f − Pn(f)∥∞ ≤

(
2

2
3

√
π

√
n+ k

)
∥f − p∗∥∞

for some constant k. This implies the maximum error of Chebyshev expansions is
worse by at most a logarithmic factor compared to that of p∗, while the maximum
error of Legendre expansions is worse by at most a factor of

√
n compared to that

of p∗. Since

lim
x→∞

log(x)

f(x)
= 0

for any polynomial f , ∥Tn(f)∥∞ < ∥Pn(f)∥∞ as n approaches ∞. Examples of
analytic functions for which the superiority of Chebyshev expansions was verified
include exp(x5), ln(1.2 + x), and (1 + 4x2)−1 in [4] and sin−1 x and ex in [10] for
the interval [−1, 1].

The optimal rates of convergence of Pn(f) and Tn(f) are a constant times less
than that of p∗ for non-analytic functions. Non-analytic freeform surfaces might
contain discontinuities or discontinuities of the derivative where the deviations of
Pn(f) and Tn(f) from f increase noticeably. Examples of various non-analytic
functions which were tested in [4] are (x− 1

2 )
3
+ and | sin(5x)| (piecewise analytic),

(x− 1
2 )

5
2 , |(x− 4

5 )
5
4 |, and |x| 23 (contains interior singularity), and (x+1)

5
2 , (1−x2) 3

2 ,

and cos−1(x) (contains endpoint singularities).
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It is clear however that Chebyshev and Legendre polynomial expansions are both
more suitable than square Zernike polynomials for describing analytic freeform sur-
faces over rectangular apertures. Diagrams on [[7], p. 9] obtained during aberration
correction show that the optical quality achieved over rectangular apertures is bet-
ter with the Legendre polynomials than with square Zernike polynomials and the
former yields better image quality than existing systems after identical optimization
procedures were applied.

Remark 4.4. Around 30 Legendre or Chebshev terms are needed for interpolation
of freeform surfaces over rectangular apertures.

Although Chebyshev expansions are a better minimax candidate than Legendre
expansions, the former may perform worse than the latter at specific points. For
example, [9] showed that the Henyey-Greenstein phase function, which describes
the angular distribution of light scattered by small particles, is better approximated
by the Legendre expansion near a 0◦ forward scattering angle and by the Chebyshev
expansion at most other scattering angles.

5. Polynomials for Elliptic Apertures

We turn our attention to the final result of this report, an attempt to derive
orthogonal polynomials for elliptical apertures. We follow the method of [6].

Elliptical coordinates are µ and ν.

Definition 5.1. For µ ∈ R+ and ν ∈ [0, 2π],

x = a coshµ cos ν and y = a sinhµ sin ν.

Suppose f is a continuous function defined over the unit ellipse. Weiertrass’s
approximation theorem implies we can approximate f as precisely as needed with
a function of polynomials. Hence,

(5.2) f(x, y) =

∞∑
p=0

∞∑
q=0

Cpqx
pyq,

where Cpq are arbitrary coefficients. Definition 5.1 implies

xpyq = (a coshµ cos ν)p(a sinhµ sin ν)q.

Since hyperbolic functions cosh and sinh equal

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
,

we have

xpyq =

[
(a cos ν)

(
eµ + e−µ

2

)]p [
(a sin ν)

(
eµ − e−µ

2

)]q
= ap+q cosp ν sinq ν

(
eµ + e−µ

2

)p(
eµ − e−µ

2

)q
,

which Euler’s formula for cosp ν sinq ν implies is equivalent to

ap+q
(
eiν + e−iν

2

)p(
eiν − e−iν

2i

)q (
eµ + e−µ

2

)p(
eµ − e−µ

2

)q
.

Factoring out the powers of 2 gives

ap+q

2(2p+2q)iq
(
eiν + e−iν

)p (
eiν − e−iν

)q (
eµ + e−µ

)p (
eµ − e−µ

)q
.
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For abbreviation, let

ζ =
ap+q

2(2p+2q)iq
.

Then, (2.8) implies

xpyq = ζ

[
p∑
s=0

(
p

s

)
(eiν)p−s(e−iν)s

][
q∑
t=0

(
q

t

)
(eiν)q−t(−e−iν)t

]
[

p∑
s=0

(
p

s

)
(eµ)p−s(e−µ)s

][
q∑
t=0

(
q

t

)
(eµ)q−t(−e−µ)t

]
,

which is equivalent to

4ζ

p∑
s=0

q∑
t=0

(
p

s

)
(eiν)p−s(e−iν)s(eµ)p−s(e−µ)s

(
q

t

)
(eiν)q−t(−e−iν)t(eµ)q−t(−e−µ)t.

after combining identical power series and combinations. For better readability, let

σ = 4ζ

p∑
s=0

q∑
t=0

(
p

s

)(
q

t

)
,

which implies xpyq is equivalent to

σ(eiν)p−s(eiν)q−t(e−iν)s(−e−iν)t(eµ)p−s(eµ)q−t(e−µ)s(−e−µ)t.

After combining terms with identical bases, we reach

σ(eiν)p+q−(s+t)(e−iν)s+t(eµ)p+q−(s+t)(e−µ)s+t,

which by rearrangement and properties of exponents is equivalent to

σ(eiνeµ)p+q−(s+t)(e−iνe−µ)(s+t) = σe(iν+µ)(p+q)e(iν+µ)(−2(s+t)).

Substituting for σ yields

(5.3) xpyq = 4ζ

p∑
s=0

q∑
t=0

(
p

s

)(
q

t

)
e(iν+µ)(p+q)e(iν+µ)(−2(s+t)).

However, if s and t are nonzero, then(
p

s

)(
q

t

)
=

(
p!

(p− s)!s!

)(
q!

(q − t)!t!

)
,

which is equivalent to

(5.4)
(p(p− 1) · · · (p− (s− 1))) (q(q − 1) · · · (q − (t− 1)))

s!t!
.

Otherwise,

(5.5)

(
p

s

)(
q

t

)
=


p if s = 1, t = 0

q if s = 0, t = 1

1 if s = t = 0.

According to [7], letting l = s + t enables us to combine exponential terms with
fixed l into a single term with coefficient Cl, but we remark that (5.4) and (5.5)
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imply that introducing l makes it impossible to determine the exact value of Cl.
Substituting for ζ in (5.3) implies

xpyq = 4

(
ap+q

2(2p+2q)iq

)
e(iν+µ)(p+q)

p+q∑
l=0

Cle
(iν+µ)(−2l),

and letting m = p+ q implies

xpyq =
ame(iν+µ)m

2(2m−2)iq

m∑
l=0

Cle
(iν+µ)(−2l).

Finally we use (5.2) to arrive at

f(a, µ, ν) =

∞∑
m=0

amCm
e(iν+µ)m

2(2m−2)iq

m∑
l=0

Cle
(iν+µ)(−2l) =

∞∑
m=0

am
m∑
l=0

Clme
(iν+µ)(−2l).

Hence,

(5.6) f(a, µ, ν) =

∞∑
m=0

am
m∑
l=0

Clme
(iν+µ)(−2l).
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