ORTHOGONAL POLYNOMIALS

FRANCIS BAHK

ABSTRACT. In recent years the study of fitting orthogonal polynomials to
freeform surfaces has received much attention. In this report we will detail
how the Legendre and Chebyshev polynomials were derived and compare their
properties. In the pursuit for polynomials orthogonal over elliptical apertures,
we will show our attempted derivation.
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1. INTRODUCTION

Optics is the study of light. Scientists have historically used symmetrical sur-
faces to study light and its properties, but new research shows that manufacturing
optical components using asymmetrical surfaces — also called freeform surfaces —
is promising. By introducing a freeform surface in an optical system, designers can
balance the system’s optical aberrations. This field is called freeform optics.

However, precisely manufacturing freeform surfaces according to the specifica-
tions of clients is difficult with standard machines. Instead, optical designers in-
terpolate a point cloud of the desired freeform surface using polynomials, and this
mathematical description can then be interpreted by the special machine that man-
ufactures freeform surfaces.

To minimize the interpolation error, designers use orthogonal polynomials, a set
of polynomials such that any two unique polynomials in the set are orthogonal to
each other under some inner product. It is common to use Legendre or Chebyshev
polynomials for surfaces defined over rectangular apertures.
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More precisely, suppose for each point (x,y) on the Euclidean plane, we ap-
proximate f(z,y) using a weighted sum of the basis functions. The interpolating
polynomials are given to a state-of-the-art diamond turning tool that fabricates
freeform surfaces. However, the fabrication process introduces tiny ridges in the
surface, and certain kinds of these fabrication errors cause specific aberration pat-
terns. Understanding the mathematical properties of orthogonal polynomials is
therefore useful for finding relationships between fabrication error and measured
aberrations.

2. ORTHOGONAL POLYNOMIALS

Consider a continuous function f(z) on the interval [a,b] and suppose we have
sample data (z;, f(x;)); with which to interpolate f. According to the Weierstrass
approximation theorem, f can be uniformly approximated as closely as desired by
a polynomial function. A natural idea is to use orthogonal polynomials since they
have nice properties for minimax interpolation. In this section, we will re-derive
and state the properties of Legendre and Chebyshev polynomials. In Section 4 we
will compare their rates of convergence and accuracies.

Let P(R™) denote the polynomial space on R™. Suppose we equip P(R™) with
the inner product (f, g) defined by

/ f(z)g(x)w(x) de,

where w is a non-negative weight function that assigns a certain importance to
each portion of the domain. Then the Gram-Schmidt process gives us a method to
generate an orthogonal basis for P(R™).

Definition 2.1. An orthogonal polynomial is a sequence of polynomials P, (z) of
degree n satisfying

b e #0 ifm=n
/aPn(x)Pm(x)w(@dx_{o if m#n

where ¢,, is a scalar.

The weight function is often of the form w(z) = (1—2)*(1+x)?. Fora =3 =0,
the Gram-Schmidt process on the resulting inner product space generates Legendre

polynomials, and similarly for « = 8 = —% it generates Chebyshev polynomials.
Orthogonal polynomials satisfy the recurrence relation
(2.2) Pry1(z) = (an(z) + bn) Pu(2) + ¢ P (),

where a,(z), b, and ¢, are real-valued functions.

2.1. Chebyshev Properties. We will now define some properties of Chebyshev
polynomials of the First Kind. Let T;,(z) denote the nth Chebyshev polynomial.

Definition 2.3. Chebyshev polynomials are orthogonal with respect to w(z) =
(1 — %)~ over [—1,1] and satisfy

1 0 ifn#m
/T(a:)T (x)dix— m ifn=m=0
IR Y - -
! oz itn=m2o
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Definition 2.4. T),(x) = cos(n cos™!(z)).
For each = € [—1, 1], there exists an angle § € [0, 7] such that z = cos .
Definition 2.5. T,,(z) = cos(n#).
Theorem 2.6. T,,(x) is a polynomial of degree n.
Proof. We will first prove the following lemma about an expansion of cos(nf).

Lemma 2.7.
L5
. _ k(T n—2k ;. 2k
cos(nd) = g (-1) <2k) cos 6sin“" 6.

k=0

Proof. De Moivre’s formula states ¢ = cos# + isiné, so taking both sides to the
power of n yields ()" = (cos @ + isin #)". The binomial formula states

(2.8) (x+y)" = i (Z) " Ryk,

k=0
Letting x = cosf and y = isinf in the binomial formula and using the identity
cosnb + isinnf = (cosd + isinf)™ leads to the following two equations
cos(nf) + isin(nf) = (cosf +isin )" = >, (7)) cos" ¥ i sin” 0
cos(nf) — isin(nf) = (cosf —isind)" = 31 (—1)*(}) cos"* fisin* ¢
whose sum is
2 cos(nb) =

{(g) cos™ f(isin )Y + <T) cos" 1 O(isin 0)* + (Z) cos" 2 f(isin )2 + - - } +

Kg) cos™ A(isin )° — (7;) cos™ 1 f(isinO) + <;L) cos™ 2 f(isinf)? — - ] .

As shown above, corresponding terms in each summation have the same sign when
k is even, and otherwise they are opposite signs. Therefore,

2cos(nf) =2 [(g) cos™ O(isin 0)° + (Z) cos™ 2 f(isin )2 + - - } )
which implies
n

cos(nd) = (g) cos” 0(i sin 9)0 + <2) cos™ 2 6(i sin 0)2 4.

In other words,

cos(nf) =y (—1)* (;;) cos" 2k 9sin?* 0 as needed.
k=

(=)

O

It remains to show the nth Chebyshev polynomial has degree n. The identity
sin?f = 1 — cos? @ implies sin®* § = (sin?#)* = (1 — cos®#)*. By the binomial
theorem,

(1— cos? 0)F = 1—|—---+0082:9 ?fk: even
14---—cos?* 6 if k odd.
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This means the degree of (1 — cos?0)* is 2k. If k is even, Lemma 2.7 permits us to
write
5] n
— -1 k n—2k 1 . 2k
cos(nh) kzz;)( ) <2k) (cos (1 + -+ cos*™0)),
which after expanding leads to

Z(—l)k (22) (cos" 2K 4 ... 4 (cos™ % §)(cos?* 9))

=) (-1)k <27;€> (cos™ 2K @ + - .- 4 cos™ ).

Letting = cos# in the above equation yields

5]
k(T n—2k n
) = ()@
which is a polynomial of degree n. The same argument can be applied when k is
odd, since the sign of a term does not affect the power of the product between itself
and another term, completing the proof. [

Theorem 2.9. Chebyshev polynomials satisfy the recurrence relation

To(x) = 22T 1 (x) — Ty—o(x) forn > 2.
Proof. Recall the trigonometric identities cos(a+ ) = cos(a) cos(8) —sin(a) sin(B)
and cos(a—f) = cos(a) cos(B)+sin(a) sin(8). We know cos(nf) = cos(0+0(n—1)),

which is equivalent to cosf cosf(n — 1) —sin§sin f(n — 1) by the first identity with
a =0 and f=60(n—1). Therefore,

(2.10) cos(nf) = cosfcosf(n — 1) —sinfsinf(n — 1).

In addition, cos(n—2)68 = cos(#(n—1)—0), which by the second identity is equivalent
to cosf(n — 1) cosf + sinf(n — 1) sin f. Rearranging yields

sinfsinf(n — 1) = cos(n — 2)0 — cos O cosf(n — 1),
which we can substitute into (2.10) and simplify to yield
cos(nd) = 2cos(n — 1)0 — cos(n — 2)0.
Recurrence then follows from setting x = cosf as needed. O

Theorem 2.9 allows us to the recursively generate the nth Chebyshev polynomial
starting Tp = 1 and 77 = x. The next several are

{Ty, T, Ty, Ts} = {22 — 1,42° — 32,8z — 822 +1,162° — 202> + 5z},
Theorem 2.11. The leading coefficient of T, is 2"~ for n > 0.

Proof. We present a proof by induction starting with the base case n = 1, which
holds since T} = x. Let the leading coefficient of T}, be 2" 1. T,,,1 = 2T,,—T},_1 and
the inductive hypothesis implies the degree of T}, _1 is n—2, so the leading coefficient
of T,,_1 does not influence that of T},, which is 2"~1. Hence 2 - 271 = 21+(n—1) jg
the leading coefficient of T}, 1 1. O
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Freeform surfaces are defined in three dimensions, which motivates a definition
for 2-D Chebyshev polynomials.

Definition 2.12. The jth 2-D Chebyshev polynomial F(x,y) is equivalent to
T,.(z)T,,(y), where j depends on n and m.

Definition 2.13. Fj(z,y) is a sequence of polynomials over [—1, 1] satisfying

0 ifj#y*
1 1 2 .
dx dy ™ fn=m=0
Fi(z,y)Fj«(x, = ]
/4/4 () y)\/l—sczw/l—y2 %2 ifn=m#0
%2 otherwise.

2-D Chebyshev polynomials are easily determined since they are the product of
the 1-D versions. For example {Fy, F, F», F3, Fy, F5, Fs, F7}, which is determined
by {T(), Tl7 Tg}, is

{1,z,y,22% — 1,2y, 2y? — 1,42 — 3z, (22% — 1)y).

2.2. Théorie des Mécanismes. Chebyshev polynomials were introduced in 1854
by Chebyshev in Théorie des mécanismes connus sous le nom de parallélogrammes.
My goals when writing an exposition of the original paper were to precisely inter-
pret the French language, remove redundancy wherever possible, clarify motives,
preserve order of ideas, and introduce new mathematics to corroborate the paper.
Hence I have neither taken credit for any original mathematics below nor have I
uncritically paraphrased Chebyshev.

Chebyshev used linkages to develop the theory of approximation of functions. A
mechanical linkage is a set of rigid bars connected to each other at their ends via
revolving hinges. For example, a human arm is a mechanical linkage.

FIGURE 1. Watt’s linkage.’

Linkages are useful because they produce certain kinds of motion. In Figure 1,
let the green line be the “middle bar” and the yellow lines the “rockers.” The points
marked x are fixed while the rest are not. In Figure 2, Watt’s linkage is defined by
the points ADM F'G, where D and F' are endpoints on the middle bar and M is an
arbitrary point on the middle bar. If M is located exactly in the middle of D and F
and if the length of the rockers AD and FG, are the same, then M moves along the
vertical dotted line in Figure 1. Otherwise, M follows a path called Watt’s curve.?

1See Wikipedia’s Watt’s linkage page for animation of Figure 1.
2See Wikipedia’s Watt’s curve page.
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FIGURE 2. Watt’s parallelogram in the steam engine.?

Chebyshev was interested in a specific mechanism called Watt’s parallelogram,
created by combining Watt’s linkage with a pantograph, which is a linkage of par-
allelograms that produce identical movements in various parts of the linkage.

The points O, A, and G in Figure 2 are fixed and the rest are variable. Assume
we are moving K in a circle about O. This circular motion rocks EF and B in
such a way that M and C move rectilinearly, which causes the piston S to move
rectilinearly relative to a vertical line. Therefore, the steam machine is generally
good at converting circular motion into rectilinear motion.

However, Chebyshev found two problems with this machine. First, if ||AD]|| #
|FG||, then the optimal choice for M was unknown. Second, even if M were located
optimally, the linear motion at S might not be sufficiently rectilinear. To solve
problems such as finding optimal proportions for Watt’s mechanism, Chebyshev
formulated the problem theoretically. More explicitly, Chebyshev explicitly wanted
to determine the changes to make to the approximation of f(x) in order to minimize
the maximum approximation error in [a — h,a + h] for small h.

Suppose f(x) is a given function of degree n. Let U(z) with arbitrary coefficients
Cu be a polynomial of degree n which approximates f. Suppose f and U are defined
on [a — h,a+ h] for small positive h. We want to determine {y using the minimax
criterion. Suppose the value of |f(z) — U(x)]| is considered maximum at a — h and
a + h and we have chosen (y such that the maximum of f — U is minimized in
(a—h,a+h). Then |f — U| reaches its maximum value dy; at least n+ 2 times over
[a — h,a + h], which implies |f — U| = dy at n + 2 points. Therefore, the equation

(2.14) [f(z) = U@)]? =% =0
has n + 2 roots in [a — h,a + h] that also satisfy

4 (f(2) — U)) = 0.

(2.15) (x—a—l—h)(m—a—h)%

Also let us simplify the Taylor series of f at a by letting k,, = fn—(f') and hz = (z—a).
The Taylor series of f at a is therefore ko + k1hz + hoh?2% + - -+ where z € [—1,1].

Recall we want to determine (y so that we minimize dy. Let the difference f — U

3From https: //bhavana.org.in/math-and-motion-a-look-at-chebyshevs-works-on-linkages.
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be Y. We replace f with its Taylor series to yield
(2.16) ko + kihz 4+ koh*2* + - —U =Y.

Suppose our degree of precision in the Taylor series is n, meaning we delete terms
of order greater than n. Since U must have degree n, it is possible to reduce Y to
0 which implies

(2.17) U =ko+ kihz + koh?2% + - + k,h"2"
and
(218) kn+1 = k‘n+2 == kn+m == O7

where we have introduced m to index the zero terms. We will introduce V, an
arbitrary polynomial of degree n, whose coefficients are finite when h = 0. Then

(2.19) U = Uy + VAL
where Uy = ko + k1hz + kah?z* 4 - - - + k, h™2". Therefore, we can rewrite (2.16) as
ko + kihz + kah?2% + - -+ — (ko + k1hz + kah®2% + -+ + k, h™2™ + VAT
= (Bnpmg RO g2 2y peebme)

n+m+1 4+ k n+m-+2 4 V)h7L+77L+1 —Y.

= (kn+m+lz n+m+2hz

In the above expression, suppose we discard "1 and consider terms not con-
taining h, h%, h3,.... Then
n+m+1 _ V.

b

Y = kn+m+1 z

where V is determined to minimize ky4pm412"T™ ! =V for z € [—1,1] among all
other polynomials of the same degree. We wrote the equations (2.14) and (2.15) to
minimize dr;. Similarly, V' is of degree n, so there exist n + 2 roots to the equations

{(knmﬂzwmﬂ —V)2 =62 =0
(22 = 1)) & (kpyms1 2" — V) = 0.
Abbreviate the pair of equations above by letting L = dy and
(2.20) Y =knymyr2" T -V
Hence the following equations share n + 2 roots.
2_12_9
(2.21) {?22 _1yd -
Setting the two equations above equal to each other and rearranging implies
y>?—L*  P(z*—-1)

d 2

@~ Q
Proof. Let {z1,29,...,%n, Zn+1, 2n+2} be the roots of (2.21). Suppose z,+1 = —1
and 2,12 = 1 satisfy 22 — 1 = 0. Call these edge roots. The remaining roots
{z1,22,..., 2, } must satisfy % = 0 so let them be normal roots. If z is a normal

root, say z1, then we know that (z — z1) divides the first equation in (2.21) and %
s0 (2 — z1)? divides (%)2. Thus the product (z — 21)?(z — 22)% - - (2 — 2, )? divides
the first equation and (%)2. Otherwise, z is an edge root so (z + 1)(z — 1) divides
the second equation.
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Therefore the degree of the first equation in (2.21) is 2(m+n+1) —2n = 2m+2
and the degree of % is (m+n+1—1)—n = m. These degrees imply the degrees of
P and @ are 2m and m as needed. According to [[1], p. 9], the differential equation
holds even if one or both edge roots satisfy % =0. O

We rearrange the differential equation to find
dy Qdz

V2 — L2 - VP22 - 1)

The integral of the left side is

| UV
2y P
so the integral of the right side must be of the form
g PravE
2 "p—pVR’
where p must also have degree n +m + 1. Since V is of degree n, we know y and p
cannot have terms containing z"*1, ..., zntm—1 ntm,

We now solve for y based on the value of m. If m = 0, then @ and P become
constants in the integral so

dy _ dz

The above equation implies
L A A
y::t2[(z—|—\/22—1> —|—<z—vz2—l>]

To determine the values of L and A, notice that y has degree n + 1. According to
(2.20), y = kn412""1 =V so A = n+ 1. Moreover, we know +LZ = :I:gﬁﬁ implies

L= :&:kgil ,s0 L = ig;f}. Altogether,

knJrl kn+1
(2.22) A=ntl, L=y =400

These values of A\ and L imply
(2.23) y= gzﬁ [(2 + M)nﬂ + (2= V7= 1)”“]
and according to (2.20),
Vbt [ V) v )]

which can be simplified to

n+1 n+1
z—|—\/z2—1> (z— z2—1>
2 2

(2.24) V =kpy | 2" - (

If m = 1, then (2.20) implies y = k122" "2 — V. However, V is of degree n so
y cannot contain powers of z greater than n + 1 besides k,,22"12. According to



ORTHOGONAL POLYNOMIALS 9

(2.23), y = kpy22"T2 — V is the polynomial that deviates least from 0 among all
polynomials of degree n for z € [-1,1] and V is

n+2 n+2
z+\/z2—1> (z— 22—1>

V = kn+2 Zn+2 — < 2 2

Finally, if m > 1, then we can find V' with 2m equations according to (2.20) and
explained on [[1], p. 13]. Therefore, for any m, we can find V.

We learned the polynomial g of degree n that minimizes max |f(x) — g(z)| for
lz| < a4+ h with f(*+1) nonzero takes the form g = U + VA™*!, where U =
ko + -+ k,h™2z" and V is the polynomial of degree n that deviates least from
kpy12"t 4 Epioh2™t2 4+ ... compared to all other polynomials of degree n for
|z] < 1. We also learned

n+1 n+1
z—|—\/22—1> (z— 22—1>

V =knt S ( 2 2

Thus (2.20) implies
y= kn+1z"+1 -V

n+1 n+1
z—|—\/z27—1> <z— 22—1>
2 2

n+1 n+1
z4+Vz22 -1 z—Vz2 -1
:knJrl f + f

We will now show that V' can be found for any desired accuracy.

1 +1
:kn+12n+ - kn+1 Zﬂ+ _<

Remark 2.25. For an immediate derivation of Chebyshev nodes and polynomials,
see Derivation 2.3.

If V4 is a polynomial with finite coefficients when h = 0, then

(2.26) V= kn+12n+1 —y+ Voh.
The maximum approximation error that the coefficients ¢y, minimize is
Fpi12" + kpgoh2™ 2 4 =V

— ky2he™2 ooty — Vih,
where |z| < 1. Hence

(2.27) [kni2hz™t2 4y — Voh]® = L = 0
and

d
(2.28) (22 — - (knt2hz™t? +y —Voh) =0

have n + 2 common roots. We can rewrite (2.28) as

(2% — 1)% + (2% — 1)%(kn+2hz"+2 ~Vo)h=0

implying that for sufficiently small h, all its roots living in [—1,1] must satisfy
(2% — 1)%. Also, (2.27) can be written as

(y? — Ly + 2y% (kng22" ™2 — Vo)h = 0.
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However, we showed that

n+1 n+1
z4+Vz22 -1 z—Vz2 -1
y:kn+1 f 4+ | =—=

must satisfy 4% — L? = 0, so (2.27) is equivalent to
(L? — L)y + 202 (kpy22™ " — Vo)h = 0.

This equation has degree n + 2 because the degrees of y and Vy are n + 1 and
n respectively, which are both less than n + 2. The new expressions for (2.27) and
(2.28) both have degree n + 2 so they are multiples of each other. Hence,
dy
dz
for some constant C'. Since y does not contain a term containing 2™ and the degree
of V, is at most n, the coefficient of z"*! in the first term cannot equal 0 unless
L? — I3 = 0. Under this assumption, (2.22) implies

(L? = L)y + 2L (kni22" ™2 = Vo)h = C((* = 1)—=) = 0

knJrl

2n

(2.29) L=+

which implies

C dy
= k02" — (22— 1)-= =0.
Vo 2% 2hL? (2 )dz 0
Since the degree of % must be (n 4+ 1) — 1 = n, there exists a term of the form
(n+ 1)k,112"*2 in the expansion of (22 — 1)%2. Factoring out 2"+ yields
+1)Chkypiq
Vo= 22y — BE D)
0= ( 2 2nL?
However z™"2 = (0 over our entire domain, so
(TL + 1)Ckn+1 C kn+2
kpig ————5— =0 = = .
+2 2hL2 2hL?  (n+ Dkppr
Substituting this into the expression for Vj implies
knyo dy (*—-1) dy
Vo = kppo2"t? - —212 (22 _1)—Z =k, (e ———
0 +2% (n+ Dkpaa (z )dz 2\ (n+ 1)kpt1 dz

We can finally write according to (2.26) an expression for V', which is

2.1 dy
2.30 V =kt — g+ ke, nt2 0 G,
(2.30) +1%2 Y+ Rnt2 <Z (1 + Dkt dz

Theorem 2.31. Assume V is given up to (but not including) terms of order l.
Then, V' can be found up to (but not including) terms of order 21.

Proof. Let V; denote the given V', which is of the form (2.30). Then,
V=V + W,
is an equation for finding the new value of V', where V5 is of degree n. Finding V5
is straightforward because we know it satisfies the condition that the equations
kpg12" ™ 4 kpgoh2™ 2 4 =V — R — L2 =0

d
(2* — 1)£(kn+lzn+1 + kpg2h2™ 24—V = VoY) =0
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share n + 2 roots in [—1, 1]. Since V only requires precision up to terms of order 2I,
we remove terms containing h?, B2+ p2H+2 ... to find the system of equations

y1 + Sht —Voh']2 — L2 =0 2.33A
(2.32)
. (22 = 1) (y1 + Sh! = Vzhl) =0 (2.33B),
where
(2.33) Y1 = k12" 4 kppoh2™ 2 4+ kWL
. S = kppip1 2" 4 ke ohe™ M2 4 ko B2

which can be reduced to

{yl = (Z;Llurl kphp_n_lzp) -

— n+2l p—n—Il—1_p
S =2 pmnip1 kol aE

Since y; should satisfy
yi—Li=0
(22 - 1) =,

dz
we know
(2.34) Lo = Ly + MR
Also, y; must satisfy (22 — 1)% = 0 in order to satisfy (2.32B) which allows us
dyy

to replace (2.32B) with the prerequisite. For simplicity, also replace % with some

function W of degree n that contains the same roots as % the interval [—1,1].

Altogether we now have an equivalent form for (2.32B), which is
(22 =)W =0.

The above equation has degree n + 2 and shares all of its roots with 22 — 1% =0,
so (22 — 1)W = 0 satisfies

yi —Li=0
(2.324).

Substituting (2.34) into (2.32A) implies
[y1 + Sh! — Voh!]? — L2
= [y1 + (S = V2)R')? = (La + A')?
= yi +2y1(S — Va)h' + (S — V2)?h? — (L} + 2L, AR — N*h*)
=12 4+ 2y1(S — Va)h! 4+ (S — V5)2h% — L2 — 2L, AR! + N2h% = 0.
Removing terms containing h?' leaves us with
Yyt +2y1(S — Va)h! — LT — 2Ly AR = 0,
multiplying by y; and substituting for Ly yields
(47 — L})y1 + 2L3(S — Va)h! — 2ALyh'yr = 0,
and rearranging gives

(yi — L)

AR/
l A I _
Vah' + I y1 — Sh Y% y1 = 0.
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We are sure that this equation and (22 — 1)W = 0 share n + 2 roots, so Vah! is
divisible by (22 — 1)W. Thus,

Vth 4 %hlyl _ Shl _ Wi —L)wn _
1

2 0 A
2L% l
N 2h’ + I, Ry — Ry =0,
where 1%
l yi =Ly
P 1 L
O oW ! (22— 1W

This implies Vaoh! = Ry — L%RO. Dividing R; by Ry yields Ry = r + qRy where r
is the remainder and ¢ the quotient, so

A A
Voh! = (r+qRy) — —Rop =1+ (¢ — —)Ro.
Ly Ly
A

Letting ¢ = £- implies Vh! = r, which is the condition under which we can
determine Voh! and V. A\ = L1q so the value of Ly according to (2.34) is
Ly = Ly + A\h! = Ly + (L1g)h! = L1 (1 4 ¢h").
We now know in (2.32A) the value of Ly, which is
max |k, 12" 4 kpyoh2™ 2 £k 3h?2 B V|
for z € [~1,1]. Ultimately, the equation V' = V; + Vah! implies that given some

approximation of V', we can always find a more precise approximation of V. (I

We will now solve the initial parallelogram problem. The goal of the problem
is to determine the coefficients of the degree 4 Taylor series approximation of f(x)
at © = a that minimize the difference between the approximation and f(x) in the
interval [a — h,a + h]. Assuming h is small enough and f°(a) # 0, the desired
coefficients are given by VA1 = Vh?, where V is a function of z = %% and is
chosen to minimize

max [kn112" T + kpypoh2" T 4 kpysh®2" T 4 -V

According to (2.30),

21 dy
V = kn n+l kn n+2 277 h
+1%2 Y+ Rnt2 (Z n+ Dkngadz) "

where ) )
n+ n4+
z4+vz2 -1 z—Vz2 -1
y=kny || —— el e
2 2
For n =4,
2 _1ldy
V=ks2® —ytke (25— =) p
547yt 6( 5ks  dz
and

5 5
z+V22 -1 z—Vz2 -1 5 5
= AL SoRNN I o S =ks (2P -2+ =2,
y=ks ( > ) ( 5 ) 5<z 17 +16Z>

Thus,
5 . 5 22 —1dy
_ 5 5 9.3 6
V =ksz |:]€5 <z 17 + 167;)} + kg <z B dz> h
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Finally, (2.29) implies

knJrl o E
2n | |16

With this information, we can find the exact value of V up to h* according to

Theorem 2.31 since we know V up to k2. Thus I = 2 so V = V| + Voh?. Assigning

to V1 the value of V' implies

|L1] =

Y1 = k525 + k6h2’6 -V

5 . 5 7 13 1
= k52 + keh2® — |ks |22 — =2 ) + ke (2 — =22+ = | h
o% 6l {5<Z Z) 6(42 16 16

5 5 7 13 1
— _ Y - k 6 ' _4 22 = h
=ks <z 17 +16z>+ 6(2 17 +16Z 16

7 4 13 .2 1
—y+]€5<2: —12 +E 16)]1,
and S = k72" + kghz®. We now determine V. The degree 4 equation W that
contains the roots of

dy, 4 15 4 5 5 3 13
o 5<52 42 +16 + kg | 62 7z+8z 0

is determined by Voh! = r, which is the remainder of the division
k(;( ,2'5—723—&—E )

ks (524 22 + 156) .

The remainder is r = kg (—gz + ZZ) h, so

15 5 5 5
W = ks (5z4—z2—|— )+I<:6 (—z3+z)h:0.

4 16 2 4
Next, Ry is the remainder of the division
yih? ks (22— 528+ F2) + ke (26— T2+ 1222 — &) h] A2

(Z—DW  (22-1) [ks (524 — 22+ 2) + kg (—§z3 +22)n] 7

so Ry = ks (z5 — ng + 15—62') h? = yh?. Similarly, R; is the remainder of

Shl + (yfglL;)yl Sh? + (yfgllﬁ)lh
1 _ 1
(z2-1)W (22— 1) [ks (524 — 1222+ 5) + ke (=323 4+ 52) b

5 —agz® + azz]h? + [agz* — a522 + ag]h®, where

Tkskr + k% 13ksk7 + 6](5% kskr + 2]{}%

Hence Ry = [a12

{a17a27a37a47a57a6} = {

4ks ’ 16ks5 T 16ks
36k2ks + 2kskekr — ki 8TkZks + 10kskeks — 5k Tk2ks + 2kskekr — kg}
16%2 ’ 64k2 ’ 64%2 '
Notice ‘
Ry [a12° — a22® + agz]h® + [as2* — a52® + aglh® i

Ry yh?
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Hence, © = bih%2* + byh?23 — bsh®22 — byh?2z + bsh®, where

{bl bo. bs. by b5} _ {gﬁkgk‘g + 2kskeky — k‘g 22ks k7 — k%

1642 " 16ks
87k2ks + 10kskohy — 5k3 3lkskr — 3k2 ThZks + 2ksheky — k3
61k2 T 6dks 61k2 g
Since Voh? = r up to h*, we can now determine V.
V=Vi+Vah*=

5 5 7 13 1
k “3 _ Y k 4 Y2 —\h
[ 5(42 16’Z>+ 6(42 6° " 16
+ [b1h3z4 + bah?2% — bgh32? — byh’z + b5h3]

=12 + 2% — 322 — caz + csh + ch®,

where
7 5 13 5 1
{e1,¢2,¢3,¢4,05,¢c6) = {Zkﬁh +b1, ks + b2, Tﬁkesh + bs, Eks + by, T6k6, bs}.
The division % also yields ¢ = %. Hence, the value of Ly must be
ks

Ly = Li(1+4 ¢hl) =

Thskr + k2
1+ —h* ).
( T

16
Finally, the substitution  — a = hz implies

Vhd = [0124 +c92® — 322 — caz + csh + C6h3] h®

:(01+"')(m;a>4+(62+-~-)(aj;a):s_(cg_f_...)<x;a>2

T—a
—(C4+~~)< >+(C5+---)h6+(c6+~~)h8,
which are the coefficients of the degree four Taylor series that minimize the maxi-
mum deviation from f(x) when x € [a — h,a + h]. The maximum error is

2
ks (1 + 7k5k7+k6h2> 1o,

16 Ak2

|Lyh®| =

2.3. Chebyshev Derivation. Suppose f(z) = k, 12", Let v and « satisfy

[ — v, + 7] C [a — h,a+ h]. Suppose we are looking for a polynomial u of
degree n that equals f when |z| = a + v and deviates least from f among all other
polynomials of the same degree when |z| < a 4+ . If | = max(f(z) — u(z)) for
|z| < a+ 7, then the equations

d(f(z) — u(z))

2 g2
— —1*=0
(f(z) - u(z) , -
share n roots that are located in the interval [a —~, a ++]. Moreover, the equations

40 (@) —u(x)

=0

(2.35)  (f(x) —u(@)*=1*=0, (x—a+h)(z—a— . =0
share n 4 2 roots that are located in the interval [a — h,a + h]. Suppose
n+1l _
el D SO L

hn+1 hn+1 .
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Then, (2.35) is equivalent to the equations
dy

y27L2:03 (2271)7

dz =0

which share n + 2 roots for |z| < 1. Recall

n+1 n+1
2422 -1 z—Vz2 -1
Y = knt1 —_— + | ——

2 2

Substituting our supposed values for y,x, and L into the above equation implies
kpy12™tt — u equals

+1 +1
. z—a+/(xr—a)?—h? " Lf{E=e= (r—a)?2—h? !
n+1 2 2

Suppose |z| = a++. Then, the above equation must be equal to zero. Substituting
x — a = hcosf implies

n n+1
<hcos€+«/(hcos€)2—h2> +1+<hcos¢9— (hcos@)2—h2> i
2

2

hcosf + hisinf il hcosf — hisinf\ "

- _|_ N
2 2

h n+1

— <2) ((COSH +isin )" 4 (cosf — isin 0)”“) =0.

Dividing both sides by (%)HJr1 and using Fuler’s formula twice implies
(eiG)n+1 n (efie)nﬂ _ (ei(n+1)9> + (efi(nJrl)G) — 2cos(n + 1) = 0.

Finally, dividing by 2 yields cos(n + 1)8 = 0. To find the values of x for which the
above equation is true, we should find all # for which

(n—i—l)&:g—i—wn.

Hence
0727m+7r
427
SO
(27rm+7r>
z=hcos| — | +a
2n+ 2

where m is an integer. This formula gives the abscissa for which the interpolation
error is zero for given values of h, a, and n. Recall that
d(kpp12™t —u)

=0
dx

which reduces to
sin(n +1)0
sin @
has n roots for x —a = hcosf. The roots to the above equation are understood for
only two values which are

=0

a + hcos il .

h s
a — hcos
on+2’ 2n + 2
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Hence, the assumed the value of z implies

y

a=o,h=———
COS 305

We will now derive the Chebyshev polynomials. Let a function y = f(z) be
given. We need to choose the n parameters of our interpolant Y = F'(z, k) in such
a way that y and Y intersect at n intersection points lying in [@ — h,a + h] which
minimize the maximum interpolation error in this interval. In other words, we need
to find the optimal points of intersection between y and Y. F has n parameters,
so F' should have degree n — 1. When h = 0, F' should satisfy

d d a1t a1t
F(CLO) = f(a/), aF(aqO) = %f(a)7 ey WF(CL, 0) = Wf(a),
with the nth derivative of F' being 0. Therefore,
dr dr
(2.36) —F(z,h) = —f(x) + k

dz™ dz™

for some constant k. Suppose the above derivatives remain continuous for A small
but nonzero. Then the Taylor series 7 of Y — y at a is of the form

cote(r—a)te(r—a)+.. . fepi(z—a)"+ep(z—a)™

Notice
a T

dn
dx”Y —Yy= dxﬁF(xah) - dmﬁf@)

n mn

d ar d dar
= WF((%O) - daﬁf(a) + d:T”F(x’h) - d:T"f(x) -

d’n

dn
S F(,0) — 4 f(a)

da™

N (x)
which implies
_ N+vYla+h) N

The existence of u now depends on whether 7 reduces to

z—a+/(x—a)?—h? ! x—a—+/(x—a)?—h? !
A ) |

According to our previous work, the above expression for 7 reduces to cos nf, whose

roots are
2 1
2n

for any integer m. Since the domain is [—1, 1], h and a are 1 and 0 respectively, so

< 2m+1)
r=cos|m
2n

are the abscissa of the optimal interpolation nodes, which are the Chebyshev nodes
and T, (cos #) = cosnf then follows from Definition 2.9.
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2.4. Legendre Properties. This section is about Legendre polynomials of the
First Kind.

Definition 2.37. Legendre polynomials are a sequence of polynomials P, (x) or-
thogonal over [—1,1] with respect to the weight function w(x) = 1. Legendre

polynomials satisfy
1 .
0 if
[ @ra@a=d0 T
1 1 ifn=m.

Legendre polynomials are an orthonormal basis for any real polynomial space.
The first few Legendre polynomials are

3 15 3
{PO’P17P2’P3} = {an 5-7;2 - 57 5333 — *l‘}.

2.5. Legendre Derivation. We will explain three important preliminaries before
deriving Legendre polynomials.

Definition 2.38. A generating function G defined as G(an;z) = Y. jana™ en-
codes a sequence of numbers (a,,) as the coefficients of a power series.

Remark 2.39. In R3, a multipole expansion is a power series whose first few terms
provide a good approximation of a function that depends on angles.

Remark 2.40. The Newtonian potential function ¢ gives the gravitational poten-
tial at some point p in a Euclidean space due to a fixed point mass a.

According to [[5] p. 528], mathematicians Euler and Lagrange were the first
to derive ¢ in the rectangular coordinate system, but in 1782 French polymath
Pierre-Simon Laplace independently derived ¢ in both the rectangular and polar
systems. At around the same time, Laplace’s compatriot Adrien-Marie Legendre
showed in his memoir ”Sur 'attraction des sphéroides homogenes” published in
Mémoires de Mathématiques et de Physique that the Newtonian potential given
by Laplace is the generating function for the Legendre polynomials. Hence, many
mathematicians — including Jacobi, Dirichlet, and Heine — agreed to attach the
polynomials to Legendre since he developed the multipole expansion that led to
them. The following derivation uses the method of [2] and shows the Legendre
polynomials are the coefficients in the expansion of ¢.

The gravitational potential at some point p in a Fuclidean space due to a fixed
point mass a is described by the Newtonian potential function ¢,(D) = %.
Here, G is the gravitational constant, M, is the mass of a, and D is the distance
between a and p. Since —GM, is constant, let us call it C,. Thus, ¢,(D) = %.
Let the coordinates of a be (24, Ya, 2a) and p be (z,y, z). Then, the distance from
a to p is given by

V@ =222+ (Y — ya)? + (2 — 2a)2-
Also, let Oa and dp be vectors from the origin to a and to p. The length of Oa

isdg, = \/(au‘a)2 + (Ya)? + (24)? and the length of dp isd, = /22 4+ y?>+ 22 Let 0
be the angle between Oa and O}). Using the Law of Cosines,

D = /(d,)? + (da)? — 2dyd cos.
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Let t = ‘;—:. Substitute d, = td, and = = cos 6 into the above equation to find

D = /(dy)? + (td,)? — 2d, (tdy) (x) = (d) /1 + 12 — 21,

Therefore,
0p(D) = = e =
P D (d)WV1+t—2tx (dp)g(a,t)

where g(z,t) = V14 t? — 2tx. To express g(z,t) as a Maclaurin series, which is
a Taylor series expansion of a function at z = 0, we first calculate the successive
derivatives of ¢g. For simplification, let aw = 2t2 — 2. Then,

1

1
a) = =(1—-a) =
o) = == (1-0)
The next few successive derivatives of g are
1 3 15
g =50-a) 3 ¢ =101-a)7F "= (l-a)h

The pattern implies the nth derivative of g is

_2n+41

(1—a)"2z 2n-—1
2n
for non-negative n and o = 0. Therefore,
= (2n—Dllan
Proposition 2.41. The double factorial (2k — 1)!! is equivalent to (22kk,3!1 for any

positive integer k.
Proof. First we prove two lemmas regarding double factorials.
Lemma 2.42. (2k)!! = 2~k!.
Proof.
(2k) = (2k)(2k — 2)(2k —4)---4-2=2(k)2(k — 1)2(k — 2) - - - 2(2) - 2(1),
which is equivalent to

=2"((k)(k —1)(k—2)---2-1) = 2~k!.

Lemma 2.43. n! = nll(n — D)!! for any non-negative integer n.
Proof. If n is odd, then
nll=nn—-2)(n—4)---3-land (n—1)'=n—-1)(n—-3)(n—5)---4-2.
Therefore,
ln—l=Mm----5-3-1)(n—-1)---6-4-2)=n(n—1)---3-2-1=nl

Otherwise n must be even, so the factors of n!l and (n — 1)!! are the even numbers
up to n and the odd numbers up to n — 1, respectively. Altogether, the factors of
n!l(n — 1)!! must be all the numbers up to n, which is n!. O
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Lemma 2.43 implies
ol — nl nan-1)n-2)--- m+nn-1)n-2)--- (n+1)

n= (nm-1)n-3)- (n+1) (n—=1)(n=3)--- (n4+ 1)
Now, let n = 2k — 1. Then,

C(@k-D 4D @R (2k)
k= DN = oD+ i~ @R~ 2R

using Lemma 2.42 in the denominator. O

Expanding the series explicitly for the first few terms yields
(=Dla® (Dt 32  (5)Na? 1 3 5, 5 4
=14 = 2 il
200! oIl T o2l o33 MR T
using Proposition 2.41. We can then substitute 2zt — 2 for a and rearrange terms
to find the Legendre polynomials.

1 3 5
g =1+ (2t —t?) + §(2xt—t2)2 + 1—6(2xt—t2)3 4o

1, 3 5
=1+4at—-t>+ g((23:15)2‘ — dat® +t*) + E((m)?’ + 122t* + 6xt° + %) + - -

2
53 3

— (1) + @)+ (gﬁ _ %)tQ FOa = D (O (P

The expansion of g reveals that the nth Legendre polynomial P, is the coefficient
of t™, as needed.

3. INTERPOLATION ERROR

The Runge Phenomenon occurs when uniform spacing between interpolation
nodes causes the interpolating polynomial to experience severe oscillation along
the edges of the interval of approximation. For example, consider (1 + 25x?)~! on
[-1,1]. The Chebyshev nodes reduce the Runge phenomenon.

Definition 3.1. The Chebyshev nodes zj, defined by
2k —1
T = COS <()7T>

2n
are the roots of T,,(x) on [—1,1].

Suppose f € C™*1[—1,1] and p are polynomials of degree n and p interpolates
f at n nodes {1, 29, ..., Tpn}.

Theorem 3.2. ||f — plle is bounded by

1F D oo
(n+1)!

where w(zx) = (x — x1)(x — x2) -+ (x — ).

[w]loo

Since f and n are given, the minimum | f — p||le corresponds to the set of
interpolation nodes that minimize ||w||~. Let P be the monic polynomials of degree
n defined over [~1,1]. Hence w € P. Theorem 2.11 implies that dividing the
nth Chebyshev polynomial by its leading coefficient which is 2"~! yields a monic
polynomial of degree n whose roots are exactly the Chebyshev nodes.
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Theorem 3.3. ||f — pll s bounded by

(3.4) N Easl

1
2(n=1)(n 4 1)!
Proof. Suppose g(x) € P and h(z) = it T ().

Lemma 3.5. h € P satisfies ||h||oo < ||p|loo for all p € P over [<1,1]. Also, ||h|s
= 5+ and |h| = ||h]| at n+ 1 points {xo,z1,...,xn} such that z) = cos £ for k
between 0 and n, inclusive.

Proof. For a contradiction, suppose [|g|lsc < 5ier. Let f(z) = 5Ty (z) — g(x).
The leading coefficient of T}, (z) is 277!, which implies f(z) must have degree less
than n since the terms with the highest order in g(x) and T, (x) disappear. Since
T,(z)] = 1 at its extreme points, [|gfloc < 57 < zmr|Tn(z)]. This implies
lg(z)| < |32=5Tn(z)| because n is positive. Altogether, letting z = cos(2%) in
Definition 2.4 implies

2
T, (x) = cos (n cos™ ' (cos ]:Lﬂ-)) =cos(2kn) =1 for 0 <2k <n.

By assumption, ||gllc < 57t < 1, 50 ||g[loc < 1. Since Ty,(z) =1 > |g(z)| and k
is an integer, we know f(x) must be positive at | 5| 4 1 distinct points. Similarly,

whenever x = COS(W)7 we find

2k + )7

n

T, (x) = cos (n cos™! (COS )> = cos(2kn+m) =—-1 for 0<2k+1<n.

We know T),(z) = —1 < [g(z)| so there are |5 | + 1 unique points at which f(x)
must be negative. To be clear, |f(z)| = || f|lc at a total of 2| % | +2 extrema which
can be described by the set E = {xg, z1,...,2,} = {cos 0%’(308 %, ..,c08 7} The
method of construction of the set E implies f(z) is positive at 2 when k is odd and
negative when k is even. The Intermediate Value Theorem asserts that whenever
fla) < L < f(b), there exists a point ¢ in (a,b) satisfying f(c¢) = L. Adjacent
elements of the set f(E) = {f(zo), f(x1),..., f(x,)} differ in sign and polynomials
are continuous. Without loss of generality, let f(x;) < f(z;) for any x; adjacent to
2;. Then, the Intermediate Value Theorem implies there is some point ¢ in between
z; and x; such that f(z;) < f(c) = 0 < f(z;). Because f is positive [ § | 41 unique
times and negative | 3 | +1 times, in total f must cross the z-axis n times. In other
words, f has n roots, which is impossible because our assumption showed f must
have degree less than n. Therefore, it must be true that [|g|lec > 5. O

Thus the maximum of any monic polynomial g of degree n over [—1,1] can be
made as small as 5, so Theorem 3.2 implies ||f — p||os can be reduced to

1774 oo
2= + 1)1

completing the proof. O
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4. COMPARISON OF CHEBYSHEV AND LEGENDRE EXPANSIONS

Suppose f,p* € C[—1,1] are of degree n. Then the minimax interpolating poly-
nomial p* exists and is unique. The Legendre expansion P, (f) of degree n is defined
as

Po(f) = a1Pi(2) + agPa(z) + -+ - + an Po(z)

and the Chebyshev expansion T,,(f) of degree n is defined as
To(f) = a1Ti(z) + axTo(x) + - + an Ty (),

where the coefficients (a,,) for each expansion can be determined using the applica-
tion of an inner product. It is well known that in the Euclidean norm, p* = P, (f)
with respect to w(z) = 1 and p* = T,(f) with respect to w(z) = (1 — %) =.
The rate at which these series converge to f is called the rate of convergence. A
larger rate of convergence implies quicker convergence on an approximation that is
arbitrarily precise.

Definition 4.1. f is real analytic on (a,b) if it is infinitely differentiable and the
Taylor series at z¢ € (a,b) converges pointwise to f(z) for all x € Vi(zo).

According to [[4], p. 5], the optimal rate of convergence of p* is better by a
constant factor than that of T,,(f) and by a factor of /n than that of P,(f) for
analytic functions. This means the optimal rate of T,,(f) is a factor \/n greater
than that of P,(f). For non-analytic smooth functions, the rate of convergence of
p* is better by a constant factor than that of both T,,(f) and P, (f).

Chebyshev expansions are also better minimax candidates than Legendre expan-
sions of the same degree. According to [[4], p. 3],

(12) I = TPl < (S 1ogn+4) 1 =5l

and
(4.3) 1f = Pa(f)llee < (\2/;\/ﬁ+ /f) 1f =P oo

for some constant k. This implies the maximum error of Chebyshev expansions is
worse by at most a logarithmic factor compared to that of p*, while the maximum
error of Legendre expansions is worse by at most a factor of /n compared to that
of p*. Since

i 08(2)

oo f(x)
for any polynomial f, [|T,(f)llcc < ||Pn(f)|lcc @s n approaches co. Examples of
analytic functions for which the superiority of Chebyshev expansions was verified
include exp(z®), In(1.2 + z), and (1 4 422)~" in [4] and sin™' 2 and e® in [10] for
the interval [—1,1].

The optimal rates of convergence of P,(f) and T,,(f) are a constant times less
than that of p* for non-analytic functions. Non-analytic freeform surfaces might
contain discontinuities or discontinuities of the derivative where the deviations of
P, (f) and T,(f) from f increase noticeably. Examples of various non-analytic

functions which were tested in [4] are (z — 3)3 and |sin(5z)| (piecewise analytic),

=0

(x— %)5, |(x—§)% |, and |z|3 (contains interior singularity), and (z+1)%, (1—2)2,

and cos™!(x) (contains endpoint singularities).
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It is clear however that Chebyshev and Legendre polynomial expansions are both
more suitable than square Zernike polynomials for describing analytic freeform sur-
faces over rectangular apertures. Diagrams on [[7], p. 9] obtained during aberration
correction show that the optical quality achieved over rectangular apertures is bet-
ter with the Legendre polynomials than with square Zernike polynomials and the
former yields better image quality than existing systems after identical optimization
procedures were applied.

Remark 4.4. Around 30 Legendre or Chebshev terms are needed for interpolation
of freeform surfaces over rectangular apertures.

Although Chebyshev expansions are a better minimax candidate than Legendre
expansions, the former may perform worse than the latter at specific points. For
example, [9] showed that the Henyey-Greenstein phase function, which describes
the angular distribution of light scattered by small particles, is better approximated
by the Legendre expansion near a 0° forward scattering angle and by the Chebyshev
expansion at most other scattering angles.

5. POLYNOMIALS FOR ELLIPTIC APERTURES

We turn our attention to the final result of this report, an attempt to derive
orthogonal polynomials for elliptical apertures. We follow the method of [6].
Elliptical coordinates are p and v.

Definition 5.1. For € RT and v € [0, 27,
r=acoshpcosy and y=asinhusinv.

Suppose f is a continuous function defined over the unit ellipse. Weiertrass’s
approximation theorem implies we can approximate f as precisely as needed with
a function of polynomials. Hence,

00 oo
(52) flay) =3 Cpary",
p=0¢=0
where Cp, are arbitrary coefficients. Definition 5.1 implies
2Py? = (acosh p cos )P (asinh psinv)?.
Since hyperbolic functions cosh and sinh equal
et +e* et —e "

coshr = — and sinhx=—"—/
2 2

e = (25 s (257)]

— P — q
. et 4 et el — o= H
= aPT cos? vsin? v < ,

we have

2 2
which Euler’s formula for cos? v sin? v implies is equivalent to

apta e 4 emWN\P e _ o= wWN\T fop 4 e \P fop _ omn\ 1
2 21 2 2 '

Factoring out the powers of 2 gives

aPt4 . b 4 e L
M(e“’—ke (e —em ™) (et + e ) (et — e ).
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For abbreviation, let
aPt4

T 9(2p+29)4q°
Then, (2.8) implies

ey = ¢ lg (%) <e“’>“<ei">51 [Z () <ei">qt<—ei">t]
32| [ (e een].

which is equivalent to

1633 (D) e ey

s=0 t=0

t
after combining identical power series and combinations. For better readability, let

=33 ()(0)

S

(£) e te ey

which implies zPy? is equivalent to
e e L e N N D L O L CRON O
After combining terms with identical bases, we reach
O_(eiu)p+q7(s+t) (efiu)s+t (eu)p+q7(s+t) (67u>s+t,
which by rearrangement and properties of exponents is equivalent to
J(eiveu)p+q—(s+t)(e—ive—u)(sﬂ) = ge ) (p+a) S(iv+u)(=2(s+1))

Substituting for o yields

P q
(53) ijy = 4<Z Z < ) < > (iv+u)(p+q) (iy+#)(,2(s+t))'

s=0 t=0
However, if s and ¢ are nonzero, then

()= (2am) (@m)

which is equivalent to

(5.4) (plp—1)--(p=(s=1)))(al¢g—=1)-(a=(—1))

slt!

Otherwise,

p ifs=1t=0

(5.5) (i)(z)_ ¢ ifs=01=1

1 ifs=¢t=0.

According to [7], letting [ = s + t enables us to combine exponential terms with
fixed [ into a single term with coefficient C;, but we remark that (5.4) and (5.5)
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imply that introducing [ makes it impossible to determine the exact value of Cj.
Substituting for ¢ in (5.3) implies

aPta , ptyq . ol
Tyt =4 <2(2p+2q)i‘1> eltriere Z Cle(“ﬂru)(i )’
=0

and letting m = p 4+ ¢ implies

anLe(U/—i-u

(iv+p)(— 2l
To(@m—2)q che g

Finally we use (5.2) to arrive at

2Py =

u/+
Flas v Z WO “2 cheuwx 20) _ Z ZCZ (v 1) (=21)
m=0 m=0

Hence,

(o) m
(5.6) fla,p,v Z amZC’ elivHm)(=20),

m=0  1=0
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