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In this talk, we will discuss the functional equation for L-functions and its proof, which is Theorem 2.4.5 in
Automorphic Forms by Anton Deitmar. But to understand L-functions, we first need to understand modular
forms: what are they? For any S ⊂ SL2(Z), the modular form (of level S) and weight k is a function g : H → C
which is analytic, automorphic, and “grows slow enough.” The automorphy condition states that the modular

form satisfies f
(

az+b
cz+d

)
= (cz + d)kf(z) for any γ =

(
a b
c d

)
∈ S. The growth condition states that f(z) is

bounded for any γ ∈ SL2(Z) as ℑ(z) → ∞. Now we can define the L-function attached to f .

Definition 0.1. Suppose the Fourier expansion of a cusp form f of weight k is given by f(z) =
∑∞

n=1 ane
2πinz (a

cusp form is a special modular form which has a0 = 0.) Then the L-function attached to f is L(f, s) =
∑∞

n=1
an

ns

(for s ∈ C), which converges locally uniformly in the region ℜ(s) > k/2 + 1.

Why are L-functions important? We care about them because much interesting data is encoded in their
metadata. For example, we can analyze their zeroes and poles to study arithmetic objects. Perhaps the most
popular example is the fact that if ζ(1) (where ζ is an L-function!) is a pole, then there are an infinite number
of primes.

Remark 0.2. For the Fourier coefficients an of a cusp form f of weight k (where k is an even natural at least
4), there exists C > 0 such that |an| ≤ Cnk/2.

Definition 0.3. On the region ℜ(z) > 0, the Gamma function is defined by the integral Γ(z) =
∫∞
0

tz−1

et dt and
converges locally uniformly absolutely.

The following theorem illustrates a highly non-trivial fact.

Theorem 0.4. Let f be a cusp form of weight k. Then,

(1) The L-function L(f, s), which is initially holomorphic for ℜ(s) > k/2+ 1, has an analytic continuation
to an entire function. The extended function Λ(f, s) := 1

(2π)sΓ(s)L(f, s) satisfies the functional equation

Λ(f, s) = (−1)k/2Λ(f, k − s) .

(2) The function Λ(f, s) is bounded on every vertical strip, viz. for every T > 0 there exists CT > 0 such
that |Λ(f, s)| ≤ CT for every s ∈ C with |ℜ(s)| ≤ T .

Proof. To be shown in-person (but here’s an outline). □

The coefficients of the Fourier expansion of f by Remark 0.2 are bounded, so we can show f decreases rapidly
as we move up the positive imaginary axis, viz. |f(iy)| → 0 as y → ∞. Likewise y 7→

∑∞
n=1 ane

−2πyn converges

as y → ∞. Thus
∫∞
ε

f(iy)|ys−1|dy converges absolutely so we can interchange sums and integrals, meaning

the integral is equivalent to
∑∞

n=1 an
1

(2πn)s

∫∞
ε

ys−1

ey dy. As ε → 0, this expression converges to 1
(2π)sL(f, s)Γ(s)

for ℜ(s) > k/2 + 1, which by definition is Λ(f, s). For boundedness: Consider
∫∞
0

f(iy)ys−1dy =
∫ 1

0
+
∫∞
1

.
The left term Λ2 trivially converges. The right term Λ1 is entire because f(iy) → 0 and y ̸= 0, so we can
show Λ1 ≤

∫∞
1

|f(iy)|yℜ(s)−1dy, which implies boundedness on vertical strips. For functional equation: Notice

f(i/y) = (yi)kf(iy) where (a, b; c, d) = (0, 1;−1, 0) ∈ SL2(Z). Then this fact and the Mellin transform show
the functional equation holds!
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